mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
coach v0.8.0
This commit is contained in:
173
memories/differentiable_neural_dictionary.py
Normal file
173
memories/differentiable_neural_dictionary.py
Normal file
@@ -0,0 +1,173 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from annoy import AnnoyIndex
|
||||
|
||||
|
||||
class AnnoyDictionary:
|
||||
def __init__(self, dict_size, key_width, new_value_shift_coefficient=0.1, batch_size=100, key_error_threshold=0.01):
|
||||
self.max_size = dict_size
|
||||
self.curr_size = 0
|
||||
self.new_value_shift_coefficient = new_value_shift_coefficient
|
||||
|
||||
self.index = AnnoyIndex(key_width, metric='euclidean')
|
||||
self.index.set_seed(1)
|
||||
|
||||
self.embeddings = np.zeros((dict_size, key_width))
|
||||
self.values = np.zeros(dict_size)
|
||||
|
||||
self.lru_timestamps = np.zeros(dict_size)
|
||||
self.current_timestamp = 0.0
|
||||
|
||||
# keys that are in this distance will be considered as the same key
|
||||
self.key_error_threshold = key_error_threshold
|
||||
|
||||
self.initial_update_size = batch_size
|
||||
self.min_update_size = self.initial_update_size
|
||||
self.key_dimension = key_width
|
||||
self.value_dimension = 1
|
||||
self._reset_buffer()
|
||||
|
||||
self.built_capacity = 0
|
||||
|
||||
def add(self, keys, values):
|
||||
# Adds new embeddings and values to the dictionary
|
||||
indices = []
|
||||
indices_to_remove = []
|
||||
for i in range(keys.shape[0]):
|
||||
index = self._lookup_key_index(keys[i])
|
||||
if index:
|
||||
# update existing value
|
||||
self.values[index] += self.new_value_shift_coefficient * (values[i] - self.values[index])
|
||||
self.lru_timestamps[index] = self.current_timestamp
|
||||
indices_to_remove.append(i)
|
||||
else:
|
||||
# add new
|
||||
if self.curr_size >= self.max_size:
|
||||
# find the LRU entry
|
||||
index = np.argmin(self.lru_timestamps)
|
||||
else:
|
||||
index = self.curr_size
|
||||
self.curr_size += 1
|
||||
self.lru_timestamps[index] = self.current_timestamp
|
||||
indices.append(index)
|
||||
|
||||
for i in reversed(indices_to_remove):
|
||||
keys = np.delete(keys, i, 0)
|
||||
values = np.delete(values, i, 0)
|
||||
|
||||
self.buffered_keys = np.vstack((self.buffered_keys, keys))
|
||||
self.buffered_values = np.vstack((self.buffered_values, values))
|
||||
self.buffered_indices = self.buffered_indices + indices
|
||||
|
||||
if len(self.buffered_indices) >= self.min_update_size:
|
||||
self.min_update_size = max(self.initial_update_size, int(self.curr_size * 0.02))
|
||||
self._rebuild_index()
|
||||
|
||||
self.current_timestamp += 1
|
||||
|
||||
# Returns the stored embeddings and values of the closest embeddings
|
||||
def query(self, keys, k):
|
||||
_, indices = self._get_k_nearest_neighbors_indices(keys, k)
|
||||
|
||||
embeddings = []
|
||||
values = []
|
||||
for ind in indices:
|
||||
self.lru_timestamps[ind] = self.current_timestamp
|
||||
embeddings.append(self.embeddings[ind])
|
||||
values.append(self.values[ind])
|
||||
|
||||
self.current_timestamp += 1
|
||||
|
||||
return embeddings, values
|
||||
|
||||
def has_enough_entries(self, k):
|
||||
return self.curr_size > k and (self.built_capacity > k)
|
||||
|
||||
def _get_k_nearest_neighbors_indices(self, keys, k):
|
||||
distances = []
|
||||
indices = []
|
||||
for key in keys:
|
||||
index, distance = self.index.get_nns_by_vector(key, k, include_distances=True)
|
||||
distances.append(distance)
|
||||
indices.append(index)
|
||||
return distances, indices
|
||||
|
||||
def _rebuild_index(self):
|
||||
self.index.unbuild()
|
||||
self.embeddings[self.buffered_indices] = self.buffered_keys
|
||||
self.values[self.buffered_indices] = np.squeeze(self.buffered_values)
|
||||
for idx, key in zip(self.buffered_indices, self.buffered_keys):
|
||||
self.index.add_item(idx, key)
|
||||
|
||||
self._reset_buffer()
|
||||
|
||||
self.index.build(50)
|
||||
self.built_capacity = self.curr_size
|
||||
|
||||
def _reset_buffer(self):
|
||||
self.buffered_keys = np.zeros((0, self.key_dimension))
|
||||
self.buffered_values = np.zeros((0, self.value_dimension))
|
||||
self.buffered_indices = []
|
||||
|
||||
def _lookup_key_index(self, key):
|
||||
distance, index = self._get_k_nearest_neighbors_indices([key], 1)
|
||||
if distance != [[]] and distance[0][0] <= self.key_error_threshold:
|
||||
return index
|
||||
return None
|
||||
|
||||
|
||||
class QDND:
|
||||
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01):
|
||||
self.num_actions = num_actions
|
||||
self.dicts = []
|
||||
|
||||
# create a dict for each action
|
||||
for a in range(num_actions):
|
||||
new_dict = AnnoyDictionary(dict_size, key_width, new_value_shift_coefficient, key_error_threshold=key_error_threshold)
|
||||
self.dicts.append(new_dict)
|
||||
|
||||
def add(self, embeddings, actions, values):
|
||||
# add a new set of embeddings and values to each of the underlining dictionaries
|
||||
embeddings = np.array(embeddings)
|
||||
actions = np.array(actions)
|
||||
values = np.array(values)
|
||||
for a in range(self.num_actions):
|
||||
idx = np.where(actions == a)
|
||||
curr_action_embeddings = embeddings[idx]
|
||||
curr_action_values = np.expand_dims(values[idx], -1)
|
||||
|
||||
self.dicts[a].add(curr_action_embeddings, curr_action_values)
|
||||
return True
|
||||
|
||||
def query(self, embeddings, actions, k):
|
||||
# query for nearest neighbors to the given embeddings
|
||||
dnd_embeddings = []
|
||||
dnd_values = []
|
||||
for i, action in enumerate(actions):
|
||||
embedding, value = self.dicts[action].query([embeddings[i]], k)
|
||||
dnd_embeddings.append(embedding[0])
|
||||
dnd_values.append(value[0])
|
||||
|
||||
return dnd_embeddings, dnd_values
|
||||
|
||||
def has_enough_entries(self, k):
|
||||
# check if each of the action dictionaries has at least k entries
|
||||
for a in range(self.num_actions):
|
||||
if not self.dicts[a].has_enough_entries(k):
|
||||
return False
|
||||
return True
|
||||
Reference in New Issue
Block a user