mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
coach v0.8.0
This commit is contained in:
135
memories/memory.py
Normal file
135
memories/memory.py
Normal file
@@ -0,0 +1,135 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
import copy
|
||||
from configurations import *
|
||||
|
||||
|
||||
class Memory:
|
||||
def __init__(self, tuning_parameters):
|
||||
"""
|
||||
:param tuning_parameters: A Preset class instance with all the running paramaters
|
||||
:type tuning_parameters: Preset
|
||||
"""
|
||||
pass
|
||||
|
||||
def store(self, obj):
|
||||
pass
|
||||
|
||||
def get(self, index):
|
||||
pass
|
||||
|
||||
def length(self):
|
||||
pass
|
||||
|
||||
def sample(self, size):
|
||||
pass
|
||||
|
||||
def clean(self):
|
||||
pass
|
||||
|
||||
|
||||
class Episode:
|
||||
def __init__(self):
|
||||
self.transitions = []
|
||||
# a num_transitions x num_transitions table with the n step return in the n'th row
|
||||
self.returns_table = None
|
||||
self._length = 0
|
||||
|
||||
def insert(self, transition):
|
||||
self.transitions.append(transition)
|
||||
self._length += 1
|
||||
|
||||
def is_empty(self):
|
||||
return self.length() == 0
|
||||
|
||||
def length(self):
|
||||
return self._length
|
||||
|
||||
def get_transition(self, transition_idx):
|
||||
return self.transitions[transition_idx]
|
||||
|
||||
def get_last_transition(self):
|
||||
return self.get_transition(-1)
|
||||
|
||||
def get_first_transition(self):
|
||||
return self.get_transition(0)
|
||||
|
||||
def update_returns(self, discount, is_bootstrapped=False, n_step_return=-1):
|
||||
if n_step_return == -1 or n_step_return > self.length():
|
||||
n_step_return = self.length()
|
||||
rewards = np.array([t.reward for t in self.transitions])
|
||||
total_return = rewards.copy()
|
||||
current_discount = discount
|
||||
for i in range(1, n_step_return):
|
||||
total_return += current_discount * np.pad(rewards[i:], (0, i), 'constant', constant_values=0)
|
||||
current_discount *= discount
|
||||
|
||||
if is_bootstrapped:
|
||||
bootstraps = np.array([np.squeeze(t.info['action_value']) for t in self.transitions[n_step_return:]])
|
||||
total_return += current_discount * np.pad(bootstraps, (0, n_step_return), 'constant', constant_values=0)
|
||||
|
||||
for transition_idx in range(self.length()):
|
||||
self.transitions[transition_idx].total_return = total_return[transition_idx]
|
||||
|
||||
def update_measurements_targets(self, num_steps):
|
||||
if 'measurements' not in self.transitions[0].state:
|
||||
return
|
||||
measurements_size = self.transitions[0].state['measurements'].shape[-1]
|
||||
total_return = sum([transition.reward for transition in self.transitions])
|
||||
for transition_idx, transition in enumerate(self.transitions):
|
||||
transition.info['future_measurements'] = np.zeros((num_steps, measurements_size))
|
||||
for step in range(num_steps):
|
||||
offset_idx = transition_idx + 2 ** step
|
||||
if offset_idx >= self.length():
|
||||
offset_idx = -1
|
||||
transition.info['future_measurements'][step] = self.transitions[offset_idx].next_state['measurements'] - \
|
||||
transition.state['measurements']
|
||||
transition.info['total_episode_return'] = total_return
|
||||
|
||||
def update_actions_probabilities(self):
|
||||
probability_product = 1
|
||||
for transition_idx, transition in enumerate(self.transitions):
|
||||
if 'action_probabilities' in transition.info.keys():
|
||||
probability_product *= transition.info['action_probabilities']
|
||||
for transition_idx, transition in enumerate(self.transitions):
|
||||
transition.info['probability_product'] = probability_product
|
||||
|
||||
def get_returns_table(self):
|
||||
return self.returns_table
|
||||
|
||||
def get_returns(self):
|
||||
return [t.total_return for t in self.transitions]
|
||||
|
||||
def to_batch(self):
|
||||
batch = []
|
||||
for i in range(self.length()):
|
||||
batch.append(self.get_transition(i))
|
||||
return batch
|
||||
|
||||
|
||||
class Transition:
|
||||
def __init__(self, state, action, reward, next_state, game_over):
|
||||
self.state = copy.deepcopy(state)
|
||||
self.state['observation'] = np.array(self.state['observation'], copy=False)
|
||||
self.action = action
|
||||
self.reward = reward
|
||||
self.total_return = None
|
||||
self.next_state = copy.deepcopy(next_state)
|
||||
self.next_state['observation'] = np.array(self.next_state['observation'], copy=False)
|
||||
self.game_over = game_over
|
||||
self.info = {}
|
||||
Reference in New Issue
Block a user