mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
updated gifs in README + fix for multiworker crashes + improved Atari DQN and Dueling DDQN presets
This commit is contained in:
@@ -142,6 +142,9 @@ class GraphManager(object):
|
||||
config = tf.ConfigProto()
|
||||
config.allow_soft_placement = True # allow placing ops on cpu if they are not fit for gpu
|
||||
config.gpu_options.allow_growth = True # allow the gpu memory allocated for the worker to grow if needed
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.2
|
||||
config.intra_op_parallelism_threads = 1
|
||||
config.inter_op_parallelism_threads = 1
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import create_and_start_parameters_server, \
|
||||
create_cluster_spec, create_worker_server_and_device
|
||||
@@ -169,6 +172,8 @@ class GraphManager(object):
|
||||
config.allow_soft_placement = True # allow placing ops on cpu if they are not fit for gpu
|
||||
config.gpu_options.allow_growth = True # allow the gpu memory allocated for the worker to grow if needed
|
||||
# config.gpu_options.per_process_gpu_memory_fraction = 0.2
|
||||
config.intra_op_parallelism_threads = 1
|
||||
config.inter_op_parallelism_threads = 1
|
||||
|
||||
if isinstance(task_parameters, DistributedTaskParameters):
|
||||
# the distributed tensorflow setting
|
||||
|
||||
@@ -20,7 +20,8 @@ schedule_params.heatup_steps = EnvironmentSteps(50000)
|
||||
# Agent #
|
||||
#########
|
||||
agent_params = DQNAgentParameters()
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.00025
|
||||
# since we are using Adam instead of RMSProp, we adjust the learning rate as well
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.0001
|
||||
|
||||
###############
|
||||
# Environment #
|
||||
|
||||
@@ -23,7 +23,9 @@ schedule_params.heatup_steps = EnvironmentSteps(50000)
|
||||
# Agent #
|
||||
#########
|
||||
agent_params = DDQNAgentParameters()
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.00025
|
||||
|
||||
# since we are using Adam instead of RMSProp, we adjust the learning rate as well
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.0001
|
||||
agent_params.network_wrappers['main'].middleware_parameters.scheme = MiddlewareScheme.Empty
|
||||
agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()]
|
||||
agent_params.network_wrappers['main'].rescale_gradient_from_head_by_factor = [1/math.sqrt(2)]
|
||||
|
||||
Reference in New Issue
Block a user