mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
ACER algorithm (#184)
* initial ACER commit * Code cleanup + several fixes * Q-retrace bug fix + small clean-ups * added documentation for acer * ACER benchmarks * update benchmarks table * Add nightly running of golden and trace tests. (#202) Resolves #200 * comment out nightly trace tests until values reset. * remove redundant observe ignore (#168) * ensure nightly test env containers exist. (#205) Also bump integration test timeout * wxPython removal (#207) Replacing wxPython with Python's Tkinter. Also removing the option to choose multiple files as it is unused and causes errors, and fixing the load file/directory spinner. * Create CONTRIBUTING.md (#210) * Create CONTRIBUTING.md. Resolves #188 * run nightly golden tests sequentially. (#217) Should reduce resource requirements and potential CPU contention but increases overall execution time. * tests: added new setup configuration + test args (#211) - added utils for future tests and conftest - added test args * new docs build * golden test update
This commit is contained in:
@@ -107,6 +107,7 @@
|
||||
<ul class="current">
|
||||
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
|
||||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ac.html">Actor-Critic</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/acer.html">ACER</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="bs_dqn.html">Bootstrapped DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="categorical_dqn.html">Categorical DQN</a></li>
|
||||
@@ -226,7 +227,7 @@
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
<ol class="arabic simple">
|
||||
<li>Sample a batch of transitions from the replay buffer.</li>
|
||||
<li>Using the next states from the sampled batch, run the online network in order to find the $Q$ maximizing
|
||||
<li>Using the next states from the sampled batch, run the online network in order to find the <span class="math notranslate nohighlight">\(Q\)</span> maximizing
|
||||
action <span class="math notranslate nohighlight">\(argmax_a Q(s_{t+1},a)\)</span>. For these actions, use the corresponding next states and run the target
|
||||
network to calculate <span class="math notranslate nohighlight">\(Q(s_{t+1},argmax_a Q(s_{t+1},a))\)</span>.</li>
|
||||
<li>In order to zero out the updates for the actions that were not played (resulting from zeroing the MSE loss),
|
||||
@@ -286,7 +287,8 @@ Set those values as the targets for the actions that were not actually played.</
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user