mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
ACER algorithm (#184)
* initial ACER commit * Code cleanup + several fixes * Q-retrace bug fix + small clean-ups * added documentation for acer * ACER benchmarks * update benchmarks table * Add nightly running of golden and trace tests. (#202) Resolves #200 * comment out nightly trace tests until values reset. * remove redundant observe ignore (#168) * ensure nightly test env containers exist. (#205) Also bump integration test timeout * wxPython removal (#207) Replacing wxPython with Python's Tkinter. Also removing the option to choose multiple files as it is unused and causes errors, and fixing the load file/directory spinner. * Create CONTRIBUTING.md (#210) * Create CONTRIBUTING.md. Resolves #188 * run nightly golden tests sequentially. (#217) Should reduce resource requirements and potential CPU contention but increases overall execution time. * tests: added new setup configuration + test args (#211) - added utils for future tests and conftest - added test args * new docs build * golden test update
This commit is contained in:
@@ -107,6 +107,7 @@
|
||||
<ul class="current">
|
||||
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
|
||||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ac.html">Actor-Critic</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/acer.html">ACER</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="bs_dqn.html">Bootstrapped DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="categorical_dqn.html">Categorical DQN</a></li>
|
||||
@@ -231,7 +232,7 @@ the actions <span class="math notranslate nohighlight">\(Q(s_{t+1},a)\)</span>,
|
||||
<li>In order to zero out the updates for the actions that were not played (resulting from zeroing the MSE loss),
|
||||
use the current states from the sampled batch, and run the online network to get the current Q values predictions.
|
||||
Set those values as the targets for the actions that were not actually played.</li>
|
||||
<li>For each action that was played, use the following equation for calculating the targets of the network: $$ y_t=r(s_t,a_t)+γcdot max_a {Q(s_{t+1},a)} $$
|
||||
<li>For each action that was played, use the following equation for calculating the targets of the network:
|
||||
<span class="math notranslate nohighlight">\(y_t=r(s_t,a_t )+\gamma \cdot max_a Q(s_{t+1})\)</span></li>
|
||||
<li>Finally, train the online network using the current states as inputs, and with the aforementioned targets.</li>
|
||||
<li>Once in every few thousand steps, copy the weights from the online network to the target network.</li>
|
||||
@@ -290,7 +291,8 @@ Set those values as the targets for the actions that were not actually played.</
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user