diff --git a/rl_coach/presets/CartPole_PPO.py b/rl_coach/presets/CartPole_PPO.py index fd85ca4..eb2ac09 100644 --- a/rl_coach/presets/CartPole_PPO.py +++ b/rl_coach/presets/CartPole_PPO.py @@ -1,9 +1,8 @@ from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters -from rl_coach.architectures.tensorflow_components.architecture import Dense +from rl_coach.architectures.tensorflow_components.layers import Dense from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase -from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection -from rl_coach.environments.gym_environment import Mujoco, mujoco_v2, MujocoInputFilter +from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2 from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters from rl_coach.exploration_policies.e_greedy import EGreedyParameters from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter @@ -29,8 +28,8 @@ agent_params = ClippedPPOAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.0003 agent_params.network_wrappers['main'].input_embedders_parameters['observation'].activation_function = 'tanh' -agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense([64])] -agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense([64])] +agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense(64)] +agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense(64)] agent_params.network_wrappers['main'].middleware_parameters.activation_function = 'tanh' agent_params.network_wrappers['main'].batch_size = 64 agent_params.network_wrappers['main'].optimizer_epsilon = 1e-5 @@ -45,22 +44,15 @@ agent_params.algorithm.optimization_epochs = 10 agent_params.algorithm.estimate_state_value_using_gae = True agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(2048) -# agent_params.input_filter = MujocoInputFilter() agent_params.exploration = EGreedyParameters() agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000) -# agent_params.pre_network_filter = MujocoInputFilter() agent_params.pre_network_filter.add_observation_filter('observation', 'normalize_observation', ObservationNormalizationFilter(name='normalize_observation')) ############### # Environment # ############### -env_params = Mujoco() -env_params.level = 'CartPole-v0' - -visualization_params = VisualizationParameters() -visualization_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] -visualization_params.dump_mp4 = False +env_params = GymVectorEnvironment(level='CartPole-v0') ######## # Test # @@ -71,5 +63,5 @@ preset_validation_params.min_reward_threshold = 150 preset_validation_params.max_episodes_to_achieve_reward = 250 graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, - schedule_params=schedule_params, visualization_params=visualization_params, + schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)