mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Enabling Coach Documentation to be run even when environments are not installed (#326)
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>rl_coach.agents.value_optimization_agent — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
<title>rl_coach.agents.value_optimization_agent — Reinforcement Learning Coach 0.12.1 documentation</title>
|
||||
|
||||
|
||||
|
||||
@@ -17,13 +17,21 @@
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
@@ -31,21 +39,16 @@
|
||||
<link rel="search" title="Search" href="../../../search.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
<div class="wy-side-nav-search" >
|
||||
|
||||
|
||||
|
||||
@@ -200,6 +203,7 @@
|
||||
|
||||
<span class="kn">from</span> <span class="nn">rl_coach.agents.agent</span> <span class="k">import</span> <span class="n">Agent</span>
|
||||
<span class="kn">from</span> <span class="nn">rl_coach.core_types</span> <span class="k">import</span> <span class="n">ActionInfo</span><span class="p">,</span> <span class="n">StateType</span><span class="p">,</span> <span class="n">Batch</span>
|
||||
<span class="kn">from</span> <span class="nn">rl_coach.filters.filter</span> <span class="k">import</span> <span class="n">NoInputFilter</span>
|
||||
<span class="kn">from</span> <span class="nn">rl_coach.logger</span> <span class="k">import</span> <span class="n">screen</span>
|
||||
<span class="kn">from</span> <span class="nn">rl_coach.memories.non_episodic.prioritized_experience_replay</span> <span class="k">import</span> <span class="n">PrioritizedExperienceReplay</span>
|
||||
<span class="kn">from</span> <span class="nn">rl_coach.spaces</span> <span class="k">import</span> <span class="n">DiscreteActionSpace</span>
|
||||
@@ -288,18 +292,18 @@
|
||||
<span class="sd"> :return: None</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">ope_manager</span>
|
||||
<span class="n">dataset_as_episodes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">call_memory</span><span class="p">(</span><span class="s1">'get_all_complete_episodes_from_to'</span><span class="p">,</span>
|
||||
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">call_memory</span><span class="p">(</span><span class="s1">'get_last_training_set_episode_id'</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">call_memory</span><span class="p">(</span><span class="s1">'num_complete_episodes'</span><span class="p">)))</span>
|
||||
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">dataset_as_episodes</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
||||
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'train_to_eval_ratio is too high causing the evaluation set to be empty. '</span>
|
||||
<span class="s1">'Consider decreasing its value.'</span><span class="p">)</span>
|
||||
|
||||
<span class="n">ips</span><span class="p">,</span> <span class="n">dm</span><span class="p">,</span> <span class="n">dr</span><span class="p">,</span> <span class="n">seq_dr</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">ope_manager</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span>
|
||||
<span class="n">dataset_as_episodes</span><span class="o">=</span><span class="n">dataset_as_episodes</span><span class="p">,</span>
|
||||
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pre_network_filter</span><span class="p">,</span> <span class="n">NoInputFilter</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pre_network_filter</span><span class="o">.</span><span class="n">reward_filters</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
|
||||
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Defining a pre-network reward filter when OPEs are calculated will result in a mismatch "</span>
|
||||
<span class="s2">"between q values (which are scaled), and actual rewards, which are not. It is advisable "</span>
|
||||
<span class="s2">"to use an input_filter, if possible, instead, which will filter the transitions directly "</span>
|
||||
<span class="s2">"in the replay buffer, affecting both the q_values and the rewards themselves. "</span><span class="p">)</span>
|
||||
|
||||
<span class="n">ips</span><span class="p">,</span> <span class="n">dm</span><span class="p">,</span> <span class="n">dr</span><span class="p">,</span> <span class="n">seq_dr</span><span class="p">,</span> <span class="n">wis</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">ope_manager</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span>
|
||||
<span class="n">evaluation_dataset_as_episodes</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">memory</span><span class="o">.</span><span class="n">evaluation_dataset_as_episodes</span><span class="p">,</span>
|
||||
<span class="n">evaluation_dataset_as_transitions</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">memory</span><span class="o">.</span><span class="n">evaluation_dataset_as_transitions</span><span class="p">,</span>
|
||||
<span class="n">batch_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">network_wrappers</span><span class="p">[</span><span class="s1">'main'</span><span class="p">]</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span>
|
||||
<span class="n">discount_factor</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">algorithm</span><span class="o">.</span><span class="n">discount</span><span class="p">,</span>
|
||||
<span class="n">reward_model</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">'reward_model'</span><span class="p">]</span><span class="o">.</span><span class="n">online_network</span><span class="p">,</span>
|
||||
<span class="n">q_network</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">'main'</span><span class="p">]</span><span class="o">.</span><span class="n">online_network</span><span class="p">,</span>
|
||||
<span class="n">network_keys</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">network_wrappers</span><span class="p">[</span><span class="s1">'main'</span><span class="p">]</span><span class="o">.</span><span class="n">input_embedders_parameters</span><span class="o">.</span><span class="n">keys</span><span class="p">()))</span>
|
||||
|
||||
@@ -309,6 +313,7 @@
|
||||
<span class="n">log</span><span class="p">[</span><span class="s1">'IPS'</span><span class="p">]</span> <span class="o">=</span> <span class="n">ips</span>
|
||||
<span class="n">log</span><span class="p">[</span><span class="s1">'DM'</span><span class="p">]</span> <span class="o">=</span> <span class="n">dm</span>
|
||||
<span class="n">log</span><span class="p">[</span><span class="s1">'DR'</span><span class="p">]</span> <span class="o">=</span> <span class="n">dr</span>
|
||||
<span class="n">log</span><span class="p">[</span><span class="s1">'WIS'</span><span class="p">]</span> <span class="o">=</span> <span class="n">wis</span>
|
||||
<span class="n">log</span><span class="p">[</span><span class="s1">'Sequential-DR'</span><span class="p">]</span> <span class="o">=</span> <span class="n">seq_dr</span>
|
||||
<span class="n">screen</span><span class="o">.</span><span class="n">log_dict</span><span class="p">(</span><span class="n">log</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="s1">'Off-Policy Evaluation'</span><span class="p">)</span>
|
||||
|
||||
@@ -318,6 +323,7 @@
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">agent_logger</span><span class="o">.</span><span class="n">create_signal_value</span><span class="p">(</span><span class="s1">'Direct Method Reward'</span><span class="p">,</span> <span class="n">dm</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">agent_logger</span><span class="o">.</span><span class="n">create_signal_value</span><span class="p">(</span><span class="s1">'Doubly Robust'</span><span class="p">,</span> <span class="n">dr</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">agent_logger</span><span class="o">.</span><span class="n">create_signal_value</span><span class="p">(</span><span class="s1">'Sequential Doubly Robust'</span><span class="p">,</span> <span class="n">seq_dr</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">agent_logger</span><span class="o">.</span><span class="n">create_signal_value</span><span class="p">(</span><span class="s1">'Weighted Importance Sampling'</span><span class="p">,</span> <span class="n">wis</span><span class="p">)</span>
|
||||
|
||||
<span class="k">def</span> <span class="nf">get_reward_model_loss</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="n">Batch</span><span class="p">):</span>
|
||||
<span class="n">network_keys</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">network_wrappers</span><span class="p">[</span><span class="s1">'reward_model'</span><span class="p">]</span><span class="o">.</span><span class="n">input_embedders_parameters</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
|
||||
@@ -341,7 +347,7 @@
|
||||
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">epochs</span><span class="p">):</span>
|
||||
<span class="n">loss</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
<span class="n">total_transitions_processed</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">batch</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">call_memory</span><span class="p">(</span><span class="s1">'get_shuffled_data_generator'</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)):</span>
|
||||
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">batch</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">call_memory</span><span class="p">(</span><span class="s1">'get_shuffled_training_data_generator'</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)):</span>
|
||||
<span class="n">batch</span> <span class="o">=</span> <span class="n">Batch</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span>
|
||||
<span class="n">loss</span> <span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_reward_model_loss</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span>
|
||||
<span class="n">total_transitions_processed</span> <span class="o">+=</span> <span class="n">batch</span><span class="o">.</span><span class="n">size</span>
|
||||
@@ -363,7 +369,7 @@
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
© Copyright 2018-2019, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
@@ -380,27 +386,16 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
</script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
||||
Reference in New Issue
Block a user