mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
Enabling Coach Documentation to be run even when environments are not installed (#326)
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Clipped Proximal Policy Optimization — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
<title>Clipped Proximal Policy Optimization — Reinforcement Learning Coach 0.12.1 documentation</title>
|
||||
|
||||
|
||||
|
||||
@@ -17,13 +17,21 @@
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
@@ -33,21 +41,16 @@
|
||||
<link rel="prev" title="Conditional Imitation Learning" href="../imitation/cil.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
<div class="wy-side-nav-search" >
|
||||
|
||||
|
||||
|
||||
@@ -233,17 +236,14 @@
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Very similar to PPO, with several small (but very simplifying) changes:</p>
|
||||
<ol class="arabic">
|
||||
<li><p class="first">Train both the value and policy networks, simultaneously, by defining a single loss function,
|
||||
which is the sum of each of the networks loss functions. Then, back propagate gradients only once from this unified loss function.</p>
|
||||
</li>
|
||||
<li><p class="first">The unified network’s optimizer is set to Adam (instead of L-BFGS for the value network as in PPO).</p>
|
||||
</li>
|
||||
<li><p class="first">Value targets are now also calculated based on the GAE advantages.
|
||||
<li><p>Train both the value and policy networks, simultaneously, by defining a single loss function,
|
||||
which is the sum of each of the networks loss functions. Then, back propagate gradients only once from this unified loss function.</p></li>
|
||||
<li><p>The unified network’s optimizer is set to Adam (instead of L-BFGS for the value network as in PPO).</p></li>
|
||||
<li><p>Value targets are now also calculated based on the GAE advantages.
|
||||
In this method, the <span class="math notranslate nohighlight">\(V\)</span> values are predicted from the critic network, and then added to the GAE based advantages,
|
||||
in order to get a <span class="math notranslate nohighlight">\(Q\)</span> value for each action. Now, since our critic network is predicting a <span class="math notranslate nohighlight">\(V\)</span> value for
|
||||
each state, setting the <span class="math notranslate nohighlight">\(Q\)</span> calculated action-values as a target, will on average serve as a <span class="math notranslate nohighlight">\(V\)</span> state-value target.</p>
|
||||
</li>
|
||||
<li><p class="first">Instead of adapting the penalizing KL divergence coefficient used in PPO, the likelihood ratio
|
||||
each state, setting the <span class="math notranslate nohighlight">\(Q\)</span> calculated action-values as a target, will on average serve as a <span class="math notranslate nohighlight">\(V\)</span> state-value target.</p></li>
|
||||
<li><p>Instead of adapting the penalizing KL divergence coefficient used in PPO, the likelihood ratio
|
||||
<span class="math notranslate nohighlight">\(r_t(\theta) =\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)}\)</span> is clipped, to achieve a similar effect.
|
||||
This is done by defining the policy’s loss function to be the minimum between the standard surrogate loss and an epsilon
|
||||
clipped surrogate loss:</p>
|
||||
@@ -253,46 +253,42 @@ clipped surrogate loss:</p>
|
||||
<dl class="class">
|
||||
<dt id="rl_coach.agents.clipped_ppo_agent.ClippedPPOAlgorithmParameters">
|
||||
<em class="property">class </em><code class="descclassname">rl_coach.agents.clipped_ppo_agent.</code><code class="descname">ClippedPPOAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/clipped_ppo_agent.html#ClippedPPOAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.clipped_ppo_agent.ClippedPPOAlgorithmParameters" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||
<li><strong>policy_gradient_rescaler</strong> – (PolicyGradientRescaler)
|
||||
<dd><dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>policy_gradient_rescaler</strong> – (PolicyGradientRescaler)
|
||||
This represents how the critic will be used to update the actor. The critic value function is typically used
|
||||
to rescale the gradients calculated by the actor. There are several ways for doing this, such as using the
|
||||
advantage of the action, or the generalized advantage estimation (GAE) value.</li>
|
||||
<li><strong>gae_lambda</strong> – (float)
|
||||
advantage of the action, or the generalized advantage estimation (GAE) value.</p></li>
|
||||
<li><p><strong>gae_lambda</strong> – (float)
|
||||
The <span class="math notranslate nohighlight">\(\lambda\)</span> value is used within the GAE function in order to weight different bootstrap length
|
||||
estimations. Typical values are in the range 0.9-1, and define an exponential decay over the different
|
||||
n-step estimations.</li>
|
||||
<li><strong>clip_likelihood_ratio_using_epsilon</strong> – (float)
|
||||
n-step estimations.</p></li>
|
||||
<li><p><strong>clip_likelihood_ratio_using_epsilon</strong> – (float)
|
||||
If not None, the likelihood ratio between the current and new policy in the PPO loss function will be
|
||||
clipped to the range [1-clip_likelihood_ratio_using_epsilon, 1+clip_likelihood_ratio_using_epsilon].
|
||||
This is typically used in the Clipped PPO version of PPO, and should be set to None in regular PPO
|
||||
implementations.</li>
|
||||
<li><strong>value_targets_mix_fraction</strong> – (float)
|
||||
implementations.</p></li>
|
||||
<li><p><strong>value_targets_mix_fraction</strong> – (float)
|
||||
The targets for the value network are an exponential weighted moving average which uses this mix fraction to
|
||||
define how much of the new targets will be taken into account when calculating the loss.
|
||||
This value should be set to the range (0,1], where 1 means that only the new targets will be taken into account.</li>
|
||||
<li><strong>estimate_state_value_using_gae</strong> – (bool)
|
||||
If set to True, the state value will be estimated using the GAE technique.</li>
|
||||
<li><strong>use_kl_regularization</strong> – (bool)
|
||||
This value should be set to the range (0,1], where 1 means that only the new targets will be taken into account.</p></li>
|
||||
<li><p><strong>estimate_state_value_using_gae</strong> – (bool)
|
||||
If set to True, the state value will be estimated using the GAE technique.</p></li>
|
||||
<li><p><strong>use_kl_regularization</strong> – (bool)
|
||||
If set to True, the loss function will be regularized using the KL diveregence between the current and new
|
||||
policy, to bound the change of the policy during the network update.</li>
|
||||
<li><strong>beta_entropy</strong> – (float)
|
||||
policy, to bound the change of the policy during the network update.</p></li>
|
||||
<li><p><strong>beta_entropy</strong> – (float)
|
||||
An entropy regulaization term can be added to the loss function in order to control exploration. This term
|
||||
is weighted using the <span class="math notranslate nohighlight">\(eta\)</span> value defined by beta_entropy.</li>
|
||||
<li><strong>optimization_epochs</strong> – (int)
|
||||
is weighted using the <span class="math notranslate nohighlight">\(eta\)</span> value defined by beta_entropy.</p></li>
|
||||
<li><p><strong>optimization_epochs</strong> – (int)
|
||||
For each training phase, the collected dataset will be used for multiple epochs, which are defined by the
|
||||
optimization_epochs value.</li>
|
||||
<li><strong>optimization_epochs</strong> – (Schedule)
|
||||
Can be used to define a schedule over the clipping of the likelihood ratio.</li>
|
||||
optimization_epochs value.</p></li>
|
||||
<li><p><strong>optimization_epochs</strong> – (Schedule)
|
||||
Can be used to define a schedule over the clipping of the likelihood ratio.</p></li>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
</div>
|
||||
@@ -310,7 +306,7 @@ Can be used to define a schedule over the clipping of the likelihood ratio.</li>
|
||||
<a href="ddpg.html" class="btn btn-neutral float-right" title="Deep Deterministic Policy Gradient" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="../imitation/cil.html" class="btn btn-neutral" title="Conditional Imitation Learning" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
<a href="../imitation/cil.html" class="btn btn-neutral float-left" title="Conditional Imitation Learning" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
@@ -319,7 +315,7 @@ Can be used to define a schedule over the clipping of the likelihood ratio.</li>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
© Copyright 2018-2019, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
@@ -336,27 +332,16 @@ Can be used to define a schedule over the clipping of the likelihood ratio.</li>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
</script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
||||
Reference in New Issue
Block a user