mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
Enabling Coach Documentation to be run even when environments are not installed (#326)
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Deep Deterministic Policy Gradient — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
<title>Deep Deterministic Policy Gradient — Reinforcement Learning Coach 0.12.1 documentation</title>
|
||||
|
||||
|
||||
|
||||
@@ -17,13 +17,21 @@
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
@@ -33,21 +41,16 @@
|
||||
<link rel="prev" title="Clipped Proximal Policy Optimization" href="cppo.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
<div class="wy-side-nav-search" >
|
||||
|
||||
|
||||
|
||||
@@ -235,14 +238,14 @@ to add exploration noise to the action. When testing, use the mean vector <span
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Start by sampling a batch of transitions from the experience replay.</p>
|
||||
<ul>
|
||||
<li><p class="first">To train the <strong>critic network</strong>, use the following targets:</p>
|
||||
<li><p>To train the <strong>critic network</strong>, use the following targets:</p>
|
||||
<p><span class="math notranslate nohighlight">\(y_t=r(s_t,a_t )+\gamma \cdot Q(s_{t+1},\mu(s_{t+1} ))\)</span></p>
|
||||
<p>First run the actor target network, using the next states as the inputs, and get <span class="math notranslate nohighlight">\(\mu (s_{t+1} )\)</span>.
|
||||
Next, run the critic target network using the next states and <span class="math notranslate nohighlight">\(\mu (s_{t+1} )\)</span>, and use the output to
|
||||
calculate <span class="math notranslate nohighlight">\(y_t\)</span> according to the equation above. To train the network, use the current states and actions
|
||||
as the inputs, and <span class="math notranslate nohighlight">\(y_t\)</span> as the targets.</p>
|
||||
</li>
|
||||
<li><p class="first">To train the <strong>actor network</strong>, use the following equation:</p>
|
||||
<li><p>To train the <strong>actor network</strong>, use the following equation:</p>
|
||||
<p><span class="math notranslate nohighlight">\(\nabla_{\theta^\mu } J \approx E_{s_t \tilde{} \rho^\beta } [\nabla_a Q(s,a)|_{s=s_t,a=\mu (s_t ) } \cdot \nabla_{\theta^\mu} \mu(s)|_{s=s_t} ]\)</span></p>
|
||||
<p>Use the actor’s online network to get the action mean values using the current states as the inputs.
|
||||
Then, use the critic online network in order to get the gradients of the critic output with respect to the
|
||||
@@ -255,35 +258,31 @@ given <span class="math notranslate nohighlight">\(\nabla_a Q(s,a)\)</span>. Fin
|
||||
<dl class="class">
|
||||
<dt id="rl_coach.agents.ddpg_agent.DDPGAlgorithmParameters">
|
||||
<em class="property">class </em><code class="descclassname">rl_coach.agents.ddpg_agent.</code><code class="descname">DDPGAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/ddpg_agent.html#DDPGAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.ddpg_agent.DDPGAlgorithmParameters" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||
<li><strong>num_steps_between_copying_online_weights_to_target</strong> – (StepMethod)
|
||||
The number of steps between copying the online network weights to the target network weights.</li>
|
||||
<li><strong>rate_for_copying_weights_to_target</strong> – (float)
|
||||
<dd><dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>num_steps_between_copying_online_weights_to_target</strong> – (StepMethod)
|
||||
The number of steps between copying the online network weights to the target network weights.</p></li>
|
||||
<li><p><strong>rate_for_copying_weights_to_target</strong> – (float)
|
||||
When copying the online network weights to the target network weights, a soft update will be used, which
|
||||
weight the new online network weights by rate_for_copying_weights_to_target</li>
|
||||
<li><strong>num_consecutive_playing_steps</strong> – (StepMethod)
|
||||
The number of consecutive steps to act between every two training iterations</li>
|
||||
<li><strong>use_target_network_for_evaluation</strong> – (bool)
|
||||
weight the new online network weights by rate_for_copying_weights_to_target</p></li>
|
||||
<li><p><strong>num_consecutive_playing_steps</strong> – (StepMethod)
|
||||
The number of consecutive steps to act between every two training iterations</p></li>
|
||||
<li><p><strong>use_target_network_for_evaluation</strong> – (bool)
|
||||
If set to True, the target network will be used for predicting the actions when choosing actions to act.
|
||||
Since the target network weights change more slowly, the predicted actions will be more consistent.</li>
|
||||
<li><strong>action_penalty</strong> – (float)
|
||||
Since the target network weights change more slowly, the predicted actions will be more consistent.</p></li>
|
||||
<li><p><strong>action_penalty</strong> – (float)
|
||||
The amount by which to penalize the network on high action feature (pre-activation) values.
|
||||
This can prevent the actions features from saturating the TanH activation function, and therefore prevent the
|
||||
gradients from becoming very low.</li>
|
||||
<li><strong>clip_critic_targets</strong> – (Tuple[float, float] or None)
|
||||
The range to clip the critic target to in order to prevent overestimation of the action values.</li>
|
||||
<li><strong>use_non_zero_discount_for_terminal_states</strong> – (bool)
|
||||
gradients from becoming very low.</p></li>
|
||||
<li><p><strong>clip_critic_targets</strong> – (Tuple[float, float] or None)
|
||||
The range to clip the critic target to in order to prevent overestimation of the action values.</p></li>
|
||||
<li><p><strong>use_non_zero_discount_for_terminal_states</strong> – (bool)
|
||||
If set to True, the discount factor will be used for terminal states to bootstrap the next predicted state
|
||||
values. If set to False, the terminal states reward will be taken as the target return for the network.</li>
|
||||
values. If set to False, the terminal states reward will be taken as the target return for the network.</p></li>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
</div>
|
||||
@@ -301,7 +300,7 @@ values. If set to False, the terminal states reward will be taken as the target
|
||||
<a href="sac.html" class="btn btn-neutral float-right" title="Soft Actor-Critic" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="cppo.html" class="btn btn-neutral" title="Clipped Proximal Policy Optimization" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
<a href="cppo.html" class="btn btn-neutral float-left" title="Clipped Proximal Policy Optimization" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
@@ -310,7 +309,7 @@ values. If set to False, the terminal states reward will be taken as the target
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
© Copyright 2018-2019, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
@@ -327,27 +326,16 @@ values. If set to False, the terminal states reward will be taken as the target
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
</script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
||||
Reference in New Issue
Block a user