mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Enabling Coach Documentation to be run even when environments are not installed (#326)
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Control Flow — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
<title>Control Flow — Reinforcement Learning Coach 0.12.1 documentation</title>
|
||||
|
||||
|
||||
|
||||
@@ -17,13 +17,21 @@
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
<script type="text/javascript" src="../_static/js/theme.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../_static/css/custom.css" type="text/css" />
|
||||
@@ -33,21 +41,16 @@
|
||||
<link rel="prev" title="Coach Dashboard" href="../dashboard.html" />
|
||||
<link href="../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
<div class="wy-side-nav-search" >
|
||||
|
||||
|
||||
|
||||
@@ -210,17 +213,17 @@ The graph manager’s main loop is the improve loop.</p>
|
||||
<a class="reference internal image-reference" href="../_images/improve.png"><img alt="../_images/improve.png" class="align-center" src="../_images/improve.png" style="width: 400px;" /></a>
|
||||
<p>The improve loop skips between 3 main phases - heatup, training and evaluation:</p>
|
||||
<ul class="simple">
|
||||
<li><strong>Heatup</strong> - the goal of this phase is to collect initial data for populating the replay buffers. The heatup phase
|
||||
<li><p><strong>Heatup</strong> - the goal of this phase is to collect initial data for populating the replay buffers. The heatup phase
|
||||
takes place only in the beginning of the experiment, and the agents will act completely randomly during this phase.
|
||||
Importantly, the agents do not train their networks during this phase. DQN for example, uses 50k random steps in order
|
||||
to initialize the replay buffers.</li>
|
||||
<li><strong>Training</strong> - the training phase is the main phase of the experiment. This phase can change between agent types,
|
||||
to initialize the replay buffers.</p></li>
|
||||
<li><p><strong>Training</strong> - the training phase is the main phase of the experiment. This phase can change between agent types,
|
||||
but essentially consists of repeated cycles of acting, collecting data from the environment, and training the agent
|
||||
networks. During this phase, the agent will use its exploration policy in training mode, which will add noise to its
|
||||
actions in order to improve its knowledge about the environment state space.</li>
|
||||
<li><strong>Evaluation</strong> - the evaluation phase is intended for evaluating the current performance of the agent. The agents
|
||||
actions in order to improve its knowledge about the environment state space.</p></li>
|
||||
<li><p><strong>Evaluation</strong> - the evaluation phase is intended for evaluating the current performance of the agent. The agents
|
||||
will act greedily in order to exploit the knowledge aggregated so far and the performance over multiple episodes of
|
||||
evaluation will be averaged in order to reduce the stochasticity effects of all the components.</li>
|
||||
evaluation will be averaged in order to reduce the stochasticity effects of all the components.</p></li>
|
||||
</ul>
|
||||
</div>
|
||||
<div class="section" id="level-manager">
|
||||
@@ -240,29 +243,29 @@ a lower hierarchy level.</p>
|
||||
<h2>Agent<a class="headerlink" href="#agent" title="Permalink to this headline">¶</a></h2>
|
||||
<p>The base agent class has 3 main function that will be used during those phases - observe, act and train.</p>
|
||||
<ul class="simple">
|
||||
<li><strong>Observe</strong> - this function gets the latest response from the environment as input, and updates the internal state
|
||||
<li><p><strong>Observe</strong> - this function gets the latest response from the environment as input, and updates the internal state
|
||||
of the agent with the new information. The environment response will
|
||||
be first passed through the agent’s <code class="code docutils literal notranslate"><span class="pre">InputFilter</span></code> object, which will process the values in the response, according
|
||||
to the specific agent definition. The environment response will then be converted into a
|
||||
<code class="code docutils literal notranslate"><span class="pre">Transition</span></code> which will contain the information from a single step
|
||||
<span class="math notranslate nohighlight">\((s_{t}, a_{t}, r_{t}, s_{t+1}, \textrm{terminal signal})\)</span>, and store it in the memory.</li>
|
||||
<span class="math notranslate nohighlight">\((s_{t}, a_{t}, r_{t}, s_{t+1}, \textrm{terminal signal})\)</span>, and store it in the memory.</p></li>
|
||||
</ul>
|
||||
<a class="reference internal image-reference" href="../_images/observe.png"><img alt="../_images/observe.png" class="align-center" src="../_images/observe.png" style="width: 700px;" /></a>
|
||||
<ul class="simple">
|
||||
<li><strong>Act</strong> - this function uses the current internal state of the agent in order to select the next action to take on
|
||||
<li><p><strong>Act</strong> - this function uses the current internal state of the agent in order to select the next action to take on
|
||||
the environment. This function will call the per-agent custom function <code class="code docutils literal notranslate"><span class="pre">choose_action</span></code> that will use the network
|
||||
and the exploration policy in order to select an action. The action will be stored, together with any additional
|
||||
information (like the action value for example) in an <code class="code docutils literal notranslate"><span class="pre">ActionInfo</span></code> object. The ActionInfo object will then be
|
||||
passed through the agent’s <code class="code docutils literal notranslate"><span class="pre">OutputFilter</span></code> to allow any processing of the action (like discretization,
|
||||
or shifting, for example), before passing it to the environment.</li>
|
||||
or shifting, for example), before passing it to the environment.</p></li>
|
||||
</ul>
|
||||
<a class="reference internal image-reference" href="../_images/act.png"><img alt="../_images/act.png" class="align-center" src="../_images/act.png" style="width: 700px;" /></a>
|
||||
<ul class="simple">
|
||||
<li><strong>Train</strong> - this function will sample a batch from the memory and train on it. The batch of transitions will be
|
||||
<li><p><strong>Train</strong> - this function will sample a batch from the memory and train on it. The batch of transitions will be
|
||||
first wrapped into a <code class="code docutils literal notranslate"><span class="pre">Batch</span></code> object to allow efficient querying of the batch values. It will then be passed into
|
||||
the agent specific <code class="code docutils literal notranslate"><span class="pre">learn_from_batch</span></code> function, that will extract network target values from the batch and will
|
||||
train the networks accordingly. Lastly, if there’s a target network defined for the agent, it will sync the target
|
||||
network weights with the online network.</li>
|
||||
network weights with the online network.</p></li>
|
||||
</ul>
|
||||
<a class="reference internal image-reference" href="../_images/train.png"><img alt="../_images/train.png" class="align-center" src="../_images/train.png" style="width: 700px;" /></a>
|
||||
</div>
|
||||
@@ -279,7 +282,7 @@ network weights with the online network.</li>
|
||||
<a href="network.html" class="btn btn-neutral float-right" title="Network Design" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="../dashboard.html" class="btn btn-neutral" title="Coach Dashboard" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
<a href="../dashboard.html" class="btn btn-neutral float-left" title="Coach Dashboard" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
@@ -288,7 +291,7 @@ network weights with the online network.</li>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
© Copyright 2018-2019, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
@@ -305,27 +308,16 @@ network weights with the online network.</li>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
</script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
||||
@@ -8,7 +8,7 @@
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Distributed Coach - Horizontal Scale-Out — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
<title>Distributed Coach - Horizontal Scale-Out — Reinforcement Learning Coach 0.12.1 documentation</title>
|
||||
|
||||
|
||||
|
||||
@@ -17,13 +17,21 @@
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
<script type="text/javascript" src="../_static/js/theme.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../_static/css/custom.css" type="text/css" />
|
||||
@@ -33,21 +41,16 @@
|
||||
<link rel="prev" title="Network Design" href="network.html" />
|
||||
<link href="../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
<div class="wy-side-nav-search" >
|
||||
|
||||
|
||||
|
||||
@@ -190,14 +193,14 @@
|
||||
three interfaces for horizontal scale-out, which allows for integration with different technologies and flexibility.
|
||||
These three interfaces are orchestrator, memory backend and data store.</p>
|
||||
<ul class="simple">
|
||||
<li><strong>Orchestrator</strong> - The orchestrator interface provides basic interaction points for orchestration, scheduling and
|
||||
<li><p><strong>Orchestrator</strong> - The orchestrator interface provides basic interaction points for orchestration, scheduling and
|
||||
resource management of training and rollout workers in the distributed coach mode. The interactions points define
|
||||
how Coach should deploy, undeploy and monitor the workers spawned by Coach.</li>
|
||||
<li><strong>Memory Backend</strong> - This interface is used as the backing store or stream for the memory abstraction in
|
||||
how Coach should deploy, undeploy and monitor the workers spawned by Coach.</p></li>
|
||||
<li><p><strong>Memory Backend</strong> - This interface is used as the backing store or stream for the memory abstraction in
|
||||
distributed Coach. The implementation of this module is mainly used for communicating experiences (transitions
|
||||
and episodes) from the rollout to the training worker.</li>
|
||||
<li><strong>Data Store</strong> - This interface is used as a backing store for the policy checkpoints. It is mainly used to
|
||||
synchronizing policy checkpoints from the training to the rollout worker.</li>
|
||||
and episodes) from the rollout to the training worker.</p></li>
|
||||
<li><p><strong>Data Store</strong> - This interface is used as a backing store for the policy checkpoints. It is mainly used to
|
||||
synchronizing policy checkpoints from the training to the rollout worker.</p></li>
|
||||
</ul>
|
||||
<a class="reference internal image-reference" href="../_images/horizontal-scale-out.png"><img alt="../_images/horizontal-scale-out.png" class="align-center" src="../_images/horizontal-scale-out.png" style="width: 800px;" /></a>
|
||||
<div class="section" id="supported-synchronization-types">
|
||||
@@ -207,12 +210,12 @@ rollout worker. For each algorithm, it is specified by using the <cite>Distribut
|
||||
<cite>agent_params.algorithm.distributed_coach_synchronization_type</cite> in the preset. In distributed Coach, two types of
|
||||
synchronization modes are supported: <cite>SYNC</cite> and <cite>ASYNC</cite>.</p>
|
||||
<ul class="simple">
|
||||
<li><strong>SYNC</strong> - In this type, the trainer waits for all the experiences to be gathered from distributed rollout workers
|
||||
<li><p><strong>SYNC</strong> - In this type, the trainer waits for all the experiences to be gathered from distributed rollout workers
|
||||
before training a new policy and the rollout workers wait for a new policy before gathering experiences. It is suitable
|
||||
for ON policy algorithms.</li>
|
||||
<li><strong>ASYNC</strong> - In this type, the trainer doesn’t wait for any set of experiences to be gathered from distributed
|
||||
for ON policy algorithms.</p></li>
|
||||
<li><p><strong>ASYNC</strong> - In this type, the trainer doesn’t wait for any set of experiences to be gathered from distributed
|
||||
rollout workers and the rollout workers continously gather experiences loading new policies, whenever they become
|
||||
available. It is suitable for OFF policy algorithms.</li>
|
||||
available. It is suitable for OFF policy algorithms.</p></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
@@ -228,7 +231,7 @@ available. It is suitable for OFF policy algorithms.</li>
|
||||
<a href="../contributing/add_agent.html" class="btn btn-neutral float-right" title="Adding a New Agent" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="network.html" class="btn btn-neutral" title="Network Design" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
<a href="network.html" class="btn btn-neutral float-left" title="Network Design" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
@@ -237,7 +240,7 @@ available. It is suitable for OFF policy algorithms.</li>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
© Copyright 2018-2019, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
@@ -254,27 +257,16 @@ available. It is suitable for OFF policy algorithms.</li>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
</script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
||||
@@ -8,7 +8,7 @@
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Network Design — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
<title>Network Design — Reinforcement Learning Coach 0.12.1 documentation</title>
|
||||
|
||||
|
||||
|
||||
@@ -17,13 +17,21 @@
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
<script type="text/javascript" src="../_static/js/theme.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../_static/css/custom.css" type="text/css" />
|
||||
@@ -33,21 +41,16 @@
|
||||
<link rel="prev" title="Control Flow" href="control_flow.html" />
|
||||
<link href="../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
<div class="wy-side-nav-search" >
|
||||
|
||||
|
||||
|
||||
@@ -190,22 +193,21 @@
|
||||
The network is designed in a modular way to allow reusability in different agents.
|
||||
It is separated into three main parts:</p>
|
||||
<ul>
|
||||
<li><p class="first"><strong>Input Embedders</strong> - This is the first stage of the network, meant to convert the input into a feature vector representation.
|
||||
<li><p><strong>Input Embedders</strong> - This is the first stage of the network, meant to convert the input into a feature vector representation.
|
||||
It is possible to combine several instances of any of the supported embedders, in order to allow varied combinations of inputs.</p>
|
||||
<blockquote>
|
||||
<div><p>There are two main types of input embedders:</p>
|
||||
<ol class="arabic simple">
|
||||
<li>Image embedder - Convolutional neural network.</li>
|
||||
<li>Vector embedder - Multi-layer perceptron.</li>
|
||||
<li><p>Image embedder - Convolutional neural network.</p></li>
|
||||
<li><p>Vector embedder - Multi-layer perceptron.</p></li>
|
||||
</ol>
|
||||
</div></blockquote>
|
||||
</li>
|
||||
<li><p class="first"><strong>Middlewares</strong> - The middleware gets the output of the input embedder, and processes it into a different representation domain,
|
||||
<li><p><strong>Middlewares</strong> - The middleware gets the output of the input embedder, and processes it into a different representation domain,
|
||||
before sending it through the output head. The goal of the middleware is to enable processing the combined outputs of
|
||||
several input embedders, and pass them through some extra processing.
|
||||
This, for instance, might include an LSTM or just a plain simple FC layer.</p>
|
||||
</li>
|
||||
<li><p class="first"><strong>Output Heads</strong> - The output head is used in order to predict the values required from the network.
|
||||
This, for instance, might include an LSTM or just a plain simple FC layer.</p></li>
|
||||
<li><p><strong>Output Heads</strong> - The output head is used in order to predict the values required from the network.
|
||||
These might include action-values, state-values or a policy. As with the input embedders,
|
||||
it is possible to use several output heads in the same network. For example, the <em>Actor Critic</em> agent combines two
|
||||
heads - a policy head and a state-value head.
|
||||
@@ -222,12 +224,12 @@ and are often synchronized either locally or between parallel workers. For easie
|
||||
a wrapper around these copies exposes a simplified API, which allows hiding these complexities from the agent.
|
||||
In this wrapper, 3 types of networks can be defined:</p>
|
||||
<ul class="simple">
|
||||
<li><strong>online network</strong> - A mandatory network which is the main network the agent will use</li>
|
||||
<li><strong>global network</strong> - An optional network which is shared between workers in single-node multi-process distributed learning.
|
||||
It is updated by all the workers directly, and holds the most up-to-date weights.</li>
|
||||
<li><strong>target network</strong> - An optional network which is local for each worker. It can be used in order to keep a copy of
|
||||
<li><p><strong>online network</strong> - A mandatory network which is the main network the agent will use</p></li>
|
||||
<li><p><strong>global network</strong> - An optional network which is shared between workers in single-node multi-process distributed learning.
|
||||
It is updated by all the workers directly, and holds the most up-to-date weights.</p></li>
|
||||
<li><p><strong>target network</strong> - An optional network which is local for each worker. It can be used in order to keep a copy of
|
||||
the weights stable for a long period of time. This is used in different agents, like DQN for example, in order to
|
||||
have stable targets for the online network while training it.</li>
|
||||
have stable targets for the online network while training it.</p></li>
|
||||
</ul>
|
||||
<a class="reference internal image-reference" href="../_images/distributed.png"><img alt="../_images/distributed.png" class="align-center" src="../_images/distributed.png" style="width: 600px;" /></a>
|
||||
</div>
|
||||
@@ -244,7 +246,7 @@ have stable targets for the online network while training it.</li>
|
||||
<a href="horizontal_scaling.html" class="btn btn-neutral float-right" title="Distributed Coach - Horizontal Scale-Out" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="control_flow.html" class="btn btn-neutral" title="Control Flow" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
<a href="control_flow.html" class="btn btn-neutral float-left" title="Control Flow" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
@@ -253,7 +255,7 @@ have stable targets for the online network while training it.</li>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
© Copyright 2018-2019, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
@@ -270,27 +272,16 @@ have stable targets for the online network while training it.</li>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../_static/doctools.js"></script>
|
||||
<script type="text/javascript" src="../_static/language_data.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
</script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
||||
Reference in New Issue
Block a user