1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

fix clipped ppo

This commit is contained in:
Zach Dwiel
2018-02-16 13:22:10 -05:00
parent 85afb86893
commit 39a28aba95
7 changed files with 51 additions and 39 deletions

View File

@@ -1,5 +1,5 @@
#
# Copyright (c) 2017 Intel Corporation
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -39,7 +39,7 @@ class ClippedPPOAgent(ActorCriticAgent):
def fill_advantages(self, batch):
current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch)
current_state_values = self.main_network.online_network.predict([current_states])[0]
current_state_values = self.main_network.online_network.predict(current_states)[0]
current_state_values = current_state_values.squeeze()
self.state_values.add_sample(current_state_values)
@@ -97,7 +97,7 @@ class ClippedPPOAgent(ActorCriticAgent):
actions = np.expand_dims(actions, -1)
# get old policy probabilities and distribution
result = self.main_network.target_network.predict([current_states])
result = self.main_network.target_network.predict(current_states)
old_policy_distribution = result[1:]
# calculate gradients and apply on both the local policy network and on the global policy network
@@ -106,10 +106,18 @@ class ClippedPPOAgent(ActorCriticAgent):
total_return = np.expand_dims(total_return, -1)
value_targets = gae_based_value_targets if self.tp.agent.estimate_value_using_gae else total_return
inputs = copy.copy(current_states)
# TODO: why is this output 0 and not output 1?
inputs['output_0_0'] = actions
# TODO: does old_policy_distribution really need to be represented as a list?
# A: yes it does, in the event of discrete controls, it has just a mean
# otherwise, it has both a mean and standard deviation
for input_index, input in enumerate(old_policy_distribution):
inputs['output_0_{}'.format(input_index + 1)] = input
# print('old_policy_distribution.shape', len(old_policy_distribution))
total_loss, policy_losses, unclipped_grads, fetch_result =\
self.main_network.online_network.accumulate_gradients(
[current_states] + [actions] + old_policy_distribution,
[total_return, advantages], additional_fetches=fetches)
inputs, [total_return, advantages], additional_fetches=fetches)
self.value_targets.add_sample(value_targets)
if self.tp.distributed:
@@ -177,14 +185,10 @@ class ClippedPPOAgent(ActorCriticAgent):
self.update_log() # should be done in order to update the data that has been accumulated * while not playing *
return np.append(losses[0], losses[1])
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
# convert to batch so we can run it through the network
observation = curr_state['observation']
observation = np.expand_dims(np.array(observation), 0)
def choose_action(self, current_state, phase=RunPhase.TRAIN):
if self.env.discrete_controls:
# DISCRETE
_, action_values = self.main_network.online_network.predict(observation)
_, action_values = self.main_network.online_network.predict(self.tf_input_state(current_state))
action_values = action_values.squeeze()
if phase == RunPhase.TRAIN:
@@ -195,7 +199,7 @@ class ClippedPPOAgent(ActorCriticAgent):
# self.entropy.add_sample(-np.sum(action_values * np.log(action_values)))
else:
# CONTINUOUS
_, action_values_mean, action_values_std = self.main_network.online_network.predict(observation)
_, action_values_mean, action_values_std = self.main_network.online_network.predict(self.tf_input_state(current_state))
action_values_mean = action_values_mean.squeeze()
action_values_std = action_values_std.squeeze()
if phase == RunPhase.TRAIN: