mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
BCQ variant on top of DDQN (#276)
* kNN based model for predicting which actions to drop * fix for seeds with batch rl
This commit is contained in:
@@ -17,9 +17,7 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from rl_coach.agents.dqn_agent import DQNAgentParameters
|
||||
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
|
||||
from rl_coach.agents.dqn_agent import DQNAgent, DQNAgentParameters
|
||||
from rl_coach.core_types import EnvironmentSteps
|
||||
from rl_coach.schedules import LinearSchedule
|
||||
|
||||
@@ -37,36 +35,10 @@ class DDQNAgentParameters(DQNAgentParameters):
|
||||
|
||||
|
||||
# Double DQN - https://arxiv.org/abs/1509.06461
|
||||
class DDQNAgent(ValueOptimizationAgent):
|
||||
class DDQNAgent(DQNAgent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
super().__init__(agent_parameters, parent)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
||||
def select_actions(self, next_states, q_st_plus_1):
|
||||
return np.argmax(self.networks['main'].online_network.predict(next_states), 1)
|
||||
|
||||
selected_actions = np.argmax(self.networks['main'].online_network.predict(batch.next_states(network_keys)), 1)
|
||||
q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
|
||||
(self.networks['main'].target_network, batch.next_states(network_keys)),
|
||||
(self.networks['main'].online_network, batch.states(network_keys))
|
||||
])
|
||||
|
||||
# add Q value samples for logging
|
||||
self.q_values.add_sample(TD_targets)
|
||||
|
||||
# initialize with the current prediction so that we will
|
||||
# only update the action that we have actually done in this transition
|
||||
TD_errors = []
|
||||
for i in range(batch.size):
|
||||
new_target = batch.rewards()[i] + \
|
||||
(1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * q_st_plus_1[i][selected_actions[i]]
|
||||
TD_errors.append(np.abs(new_target - TD_targets[i, batch.actions()[i]]))
|
||||
TD_targets[i, batch.actions()[i]] = new_target
|
||||
|
||||
# update errors in prioritized replay buffer
|
||||
importance_weights = self.update_transition_priorities_and_get_weights(TD_errors, batch)
|
||||
|
||||
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets,
|
||||
importance_weights=importance_weights)
|
||||
total_loss, losses, unclipped_grads = result[:3]
|
||||
|
||||
return total_loss, losses, unclipped_grads
|
||||
|
||||
Reference in New Issue
Block a user