1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

BCQ variant on top of DDQN (#276)

* kNN based model for predicting which actions to drop
* fix for seeds with batch rl
This commit is contained in:
Gal Leibovich
2019-04-16 17:06:23 +03:00
committed by GitHub
parent bdb9b224a8
commit 4741b0b916
11 changed files with 451 additions and 62 deletions

View File

@@ -0,0 +1,60 @@
#
# Copyright (c) 2019 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.layers import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head
from rl_coach.base_parameters import AgentParameters
from rl_coach.spaces import SpacesDefinition, BoxActionSpace, DiscreteActionSpace
class ClassificationHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'classification_head'
if isinstance(self.spaces.action, BoxActionSpace):
self.num_actions = 1
elif isinstance(self.spaces.action, DiscreteActionSpace):
self.num_actions = len(self.spaces.action.actions)
else:
raise ValueError(
'ClassificationHead does not support action spaces of type: {class_name}'.format(
class_name=self.spaces.action.__class__.__name__,
)
)
def _build_module(self, input_layer):
# Standard classification Network
self.class_values = self.output = self.dense_layer(self.num_actions)(input_layer, name='output')
self.output = tf.nn.softmax(self.class_values)
# calculate cross entropy loss
self.target = tf.placeholder(tf.float32, shape=(None, self.num_actions), name="target")
self.loss = tf.nn.softmax_cross_entropy_with_logits(labels=self.target, logits=self.class_values)
tf.losses.add_loss(self.loss)
def __str__(self):
result = [
"Dense (num outputs = {})".format(self.num_actions)
]
return '\n'.join(result)