mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
N-step returns for rainbow (#67)
* n_step returns for rainbow * Rename CartPole_PPO -> CartPole_ClippedPPO
This commit is contained in:
@@ -39,23 +39,17 @@ class RainbowDQNNetworkParameters(DQNNetworkParameters):
|
||||
class RainbowDQNAlgorithmParameters(CategoricalDQNAlgorithmParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.n_step = 3
|
||||
|
||||
|
||||
class RainbowDQNExplorationParameters(ParameterNoiseParameters):
|
||||
def __init__(self, agent_params):
|
||||
super().__init__(agent_params)
|
||||
|
||||
|
||||
class RainbowDQNMemoryParameters(PrioritizedExperienceReplayParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# needed for n-step updates to work. i.e. waiting for a full episode to be closed before storing each transition
|
||||
self.store_transitions_only_when_episodes_are_terminated = True
|
||||
|
||||
|
||||
class RainbowDQNAgentParameters(CategoricalDQNAgentParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.algorithm = RainbowDQNAlgorithmParameters()
|
||||
self.exploration = RainbowDQNExplorationParameters(self)
|
||||
self.exploration = ParameterNoiseParameters(self)
|
||||
self.memory = PrioritizedExperienceReplayParameters()
|
||||
self.network_wrappers = {"main": RainbowDQNNetworkParameters()}
|
||||
|
||||
@@ -65,15 +59,13 @@ class RainbowDQNAgentParameters(CategoricalDQNAgentParameters):
|
||||
|
||||
|
||||
# Rainbow Deep Q Network - https://arxiv.org/abs/1710.02298
|
||||
# Agent implementation is WIP. Currently is composed of:
|
||||
# Agent implementation is composed of:
|
||||
# 1. NoisyNets
|
||||
# 2. C51
|
||||
# 3. Prioritized ER
|
||||
# 4. DDQN
|
||||
# 5. Dueling DQN
|
||||
#
|
||||
# still missing:
|
||||
# 1. N-Step
|
||||
# 6. N-step returns
|
||||
|
||||
class RainbowDQNAgent(CategoricalDQNAgent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
@@ -87,7 +79,7 @@ class RainbowDQNAgent(CategoricalDQNAgent):
|
||||
|
||||
# for the action we actually took, the error is calculated by the atoms distribution
|
||||
# for all other actions, the error is 0
|
||||
distributed_q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
|
||||
distributional_q_st_plus_n, TD_targets = self.networks['main'].parallel_prediction([
|
||||
(self.networks['main'].target_network, batch.next_states(network_keys)),
|
||||
(self.networks['main'].online_network, batch.states(network_keys))
|
||||
])
|
||||
@@ -98,15 +90,16 @@ class RainbowDQNAgent(CategoricalDQNAgent):
|
||||
|
||||
batches = np.arange(self.ap.network_wrappers['main'].batch_size)
|
||||
for j in range(self.z_values.size):
|
||||
tzj = np.fmax(np.fmin(batch.rewards() +
|
||||
(1.0 - batch.game_overs()) * self.ap.algorithm.discount * self.z_values[j],
|
||||
self.z_values[self.z_values.size - 1]),
|
||||
self.z_values[0])
|
||||
# we use batch.info('should_bootstrap_next_state') instead of (1 - batch.game_overs()) since with n-step,
|
||||
# we will not bootstrap for the last n-step transitions in the episode
|
||||
tzj = np.fmax(np.fmin(batch.n_step_discounted_rewards() + batch.info('should_bootstrap_next_state') *
|
||||
(self.ap.algorithm.discount ** self.ap.algorithm.n_step) * self.z_values[j],
|
||||
self.z_values[-1]), self.z_values[0])
|
||||
bj = (tzj - self.z_values[0])/(self.z_values[1] - self.z_values[0])
|
||||
u = (np.ceil(bj)).astype(int)
|
||||
l = (np.floor(bj)).astype(int)
|
||||
m[batches, l] = m[batches, l] + (distributed_q_st_plus_1[batches, target_actions, j] * (u - bj))
|
||||
m[batches, u] = m[batches, u] + (distributed_q_st_plus_1[batches, target_actions, j] * (bj - l))
|
||||
m[batches, l] += (distributional_q_st_plus_n[batches, target_actions, j] * (u - bj))
|
||||
m[batches, u] += (distributional_q_st_plus_n[batches, target_actions, j] * (bj - l))
|
||||
|
||||
# total_loss = cross entropy between actual result above and predicted result for the given action
|
||||
TD_targets[batches, batch.actions()] = m
|
||||
@@ -122,7 +115,7 @@ class RainbowDQNAgent(CategoricalDQNAgent):
|
||||
# TODO: fix this spaghetti code
|
||||
if isinstance(self.memory, PrioritizedExperienceReplay):
|
||||
errors = losses[0][np.arange(batch.size), batch.actions()]
|
||||
self.memory.update_priorities(batch.info('idx'), errors)
|
||||
self.call_memory('update_priorities', (batch.info('idx'), errors))
|
||||
|
||||
return total_loss, losses, unclipped_grads
|
||||
|
||||
|
||||
Reference in New Issue
Block a user