mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
applying filters for a csv loaded dataset + some bug-fixes in data loading (#319)
This commit is contained in:
@@ -95,19 +95,6 @@ class Agent(AgentInterface):
|
||||
if self.ap.memory.memory_backend_params.run_type != 'trainer':
|
||||
self.memory.set_memory_backend(self.memory_backend)
|
||||
|
||||
if agent_parameters.memory.load_memory_from_file_path:
|
||||
if isinstance(agent_parameters.memory.load_memory_from_file_path, PickledReplayBuffer):
|
||||
screen.log_title("Loading a pickled replay buffer. Pickled file path: {}"
|
||||
.format(agent_parameters.memory.load_memory_from_file_path.filepath))
|
||||
self.memory.load_pickled(agent_parameters.memory.load_memory_from_file_path.filepath)
|
||||
elif isinstance(agent_parameters.memory.load_memory_from_file_path, CsvDataset):
|
||||
screen.log_title("Loading a replay buffer from a CSV file. CSV file path: {}"
|
||||
.format(agent_parameters.memory.load_memory_from_file_path.filepath))
|
||||
self.memory.load_csv(agent_parameters.memory.load_memory_from_file_path)
|
||||
else:
|
||||
raise ValueError('Trying to load a replay buffer using an unsupported method - {}. '
|
||||
.format(agent_parameters.memory.load_memory_from_file_path))
|
||||
|
||||
if self.shared_memory and self.is_chief:
|
||||
self.shared_memory_scratchpad.add(self.memory_lookup_name, self.memory)
|
||||
|
||||
@@ -262,6 +249,38 @@ class Agent(AgentInterface):
|
||||
self.output_filter.set_session(sess)
|
||||
self.pre_network_filter.set_session(sess)
|
||||
[network.set_session(sess) for network in self.networks.values()]
|
||||
self.initialize_session_dependent_components()
|
||||
|
||||
def initialize_session_dependent_components(self):
|
||||
"""
|
||||
Initialize components which require a session as part of their initialization.
|
||||
|
||||
:return: None
|
||||
"""
|
||||
|
||||
# Loading a memory from a CSV file, requires an input filter to filter through the data.
|
||||
# The filter needs a session before it can be used.
|
||||
if self.ap.memory.load_memory_from_file_path:
|
||||
self.load_memory_from_file()
|
||||
|
||||
def load_memory_from_file(self):
|
||||
"""
|
||||
Load memory transitions from a file.
|
||||
|
||||
:return: None
|
||||
"""
|
||||
|
||||
if isinstance(self.ap.memory.load_memory_from_file_path, PickledReplayBuffer):
|
||||
screen.log_title("Loading a pickled replay buffer. Pickled file path: {}"
|
||||
.format(self.ap.memory.load_memory_from_file_path.filepath))
|
||||
self.memory.load_pickled(self.ap.memory.load_memory_from_file_path.filepath)
|
||||
elif isinstance(self.ap.memory.load_memory_from_file_path, CsvDataset):
|
||||
screen.log_title("Loading a replay buffer from a CSV file. CSV file path: {}"
|
||||
.format(self.ap.memory.load_memory_from_file_path.filepath))
|
||||
self.memory.load_csv(self.ap.memory.load_memory_from_file_path, self.input_filter)
|
||||
else:
|
||||
raise ValueError('Trying to load a replay buffer using an unsupported method - {}. '
|
||||
.format(self.ap.memory.load_memory_from_file_path))
|
||||
|
||||
def register_signal(self, signal_name: str, dump_one_value_per_episode: bool=True,
|
||||
dump_one_value_per_step: bool=False) -> Signal:
|
||||
|
||||
@@ -21,7 +21,7 @@ import numpy as np
|
||||
|
||||
from rl_coach.core_types import ObservationType
|
||||
from rl_coach.filters.observation.observation_filter import ObservationFilter
|
||||
from rl_coach.spaces import ObservationSpace
|
||||
from rl_coach.spaces import ObservationSpace, VectorObservationSpace
|
||||
|
||||
|
||||
class LazyStack(object):
|
||||
@@ -63,6 +63,7 @@ class ObservationStackingFilter(ObservationFilter):
|
||||
self.stack_size = stack_size
|
||||
self.stacking_axis = stacking_axis
|
||||
self.stack = []
|
||||
self.input_observation_space = None
|
||||
|
||||
if stack_size <= 0:
|
||||
raise ValueError("The stack shape must be a positive number")
|
||||
@@ -86,7 +87,6 @@ class ObservationStackingFilter(ObservationFilter):
|
||||
raise ValueError("The stacking axis is larger than the number of dimensions in the observation space")
|
||||
|
||||
def filter(self, observation: ObservationType, update_internal_state: bool=True) -> ObservationType:
|
||||
|
||||
if len(self.stack) == 0:
|
||||
self.stack = deque([observation] * self.stack_size, maxlen=self.stack_size)
|
||||
else:
|
||||
@@ -94,9 +94,16 @@ class ObservationStackingFilter(ObservationFilter):
|
||||
self.stack.append(observation)
|
||||
observation = LazyStack(self.stack, self.stacking_axis)
|
||||
|
||||
if isinstance(self.input_observation_space, VectorObservationSpace):
|
||||
# when stacking vectors, we cannot avoid copying the memory as we're flattening it all
|
||||
observation = np.array(observation).flatten()
|
||||
|
||||
return observation
|
||||
|
||||
def get_filtered_observation_space(self, input_observation_space: ObservationSpace) -> ObservationSpace:
|
||||
if isinstance(input_observation_space, VectorObservationSpace):
|
||||
self.input_observation_space = input_observation_space = VectorObservationSpace(input_observation_space.shape * self.stack_size)
|
||||
else:
|
||||
if self.stacking_axis == -1:
|
||||
input_observation_space.shape = np.append(input_observation_space.shape, values=[self.stack_size], axis=0)
|
||||
else:
|
||||
|
||||
@@ -25,6 +25,7 @@ import numpy as np
|
||||
import random
|
||||
|
||||
from rl_coach.core_types import Transition, Episode
|
||||
from rl_coach.filters.filter import InputFilter
|
||||
from rl_coach.logger import screen
|
||||
from rl_coach.memories.memory import Memory, MemoryGranularity, MemoryParameters
|
||||
from rl_coach.utils import ReaderWriterLock, ProgressBar
|
||||
@@ -408,11 +409,12 @@ class EpisodicExperienceReplay(Memory):
|
||||
self.reader_writer_lock.release_writing()
|
||||
return mean
|
||||
|
||||
def load_csv(self, csv_dataset: CsvDataset) -> None:
|
||||
def load_csv(self, csv_dataset: CsvDataset, input_filter: InputFilter) -> None:
|
||||
"""
|
||||
Restore the replay buffer contents from a csv file.
|
||||
The csv file is assumed to include a list of transitions.
|
||||
:param csv_dataset: A construct which holds the dataset parameters
|
||||
:param input_filter: A filter used to filter the CSV data before feeding it to the memory.
|
||||
"""
|
||||
self.assert_not_frozen()
|
||||
|
||||
@@ -429,18 +431,30 @@ class EpisodicExperienceReplay(Memory):
|
||||
for e_id in episode_ids:
|
||||
progress_bar.update(e_id)
|
||||
df_episode_transitions = df[df['episode_id'] == e_id]
|
||||
input_filter.reset()
|
||||
|
||||
if len(df_episode_transitions) < 2:
|
||||
# we have to have at least 2 rows in each episode for creating a transition
|
||||
continue
|
||||
|
||||
episode = Episode()
|
||||
transitions = []
|
||||
for (_, current_transition), (_, next_transition) in zip(df_episode_transitions[:-1].iterrows(),
|
||||
df_episode_transitions[1:].iterrows()):
|
||||
state = np.array([current_transition[col] for col in state_columns])
|
||||
next_state = np.array([next_transition[col] for col in state_columns])
|
||||
|
||||
episode.insert(
|
||||
transitions.append(
|
||||
Transition(state={'observation': state},
|
||||
action=current_transition['action'], reward=current_transition['reward'],
|
||||
next_state={'observation': next_state}, game_over=False,
|
||||
info={'all_action_probabilities':
|
||||
ast.literal_eval(current_transition['all_action_probabilities'])}))
|
||||
ast.literal_eval(current_transition['all_action_probabilities'])}),
|
||||
)
|
||||
|
||||
transitions = input_filter.filter(transitions, deep_copy=False)
|
||||
for t in transitions:
|
||||
episode.insert(t)
|
||||
|
||||
# Set the last transition to end the episode
|
||||
if csv_dataset.is_episodic:
|
||||
|
||||
Reference in New Issue
Block a user