1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00

network_imporvements branch merge

This commit is contained in:
Shadi Endrawis
2018-10-02 13:41:46 +03:00
parent 72ea933384
commit 51726a5b80
110 changed files with 1639 additions and 1161 deletions

View File

@@ -13,9 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import math
import time
from typing import List, Union
import numpy as np
import tensorflow as tf
@@ -27,135 +25,6 @@ from rl_coach.spaces import SpacesDefinition
from rl_coach.utils import force_list, squeeze_list
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout, dropout_rate, layer_idx):
layers = [input_layer]
# batchnorm
if batchnorm:
layers.append(
tf.layers.batch_normalization(layers[-1], name="batchnorm{}".format(layer_idx))
)
# activation
if activation_function:
layers.append(
activation_function(layers[-1], name="activation{}".format(layer_idx))
)
# dropout
if dropout:
layers.append(
tf.layers.dropout(layers[-1], dropout_rate, name="dropout{}".format(layer_idx))
)
# remove the input layer from the layers list
del layers[0]
return layers
class Conv2d(object):
def __init__(self, params: List):
"""
:param params: list of [num_filters, kernel_size, strides]
"""
self.params = params
def __call__(self, input_layer, name: str=None):
"""
returns a tensorflow conv2d layer
:param input_layer: previous layer
:param name: layer name
:return: conv2d layer
"""
return tf.layers.conv2d(input_layer, filters=self.params[0], kernel_size=self.params[1], strides=self.params[2],
data_format='channels_last', name=name)
class Dense(object):
def __init__(self, params: Union[List, int]):
"""
:param params: list of [num_output_neurons]
"""
self.params = force_list(params)
def __call__(self, input_layer, name: str=None, kernel_initializer=None, activation=None):
"""
returns a tensorflow dense layer
:param input_layer: previous layer
:param name: layer name
:return: dense layer
"""
return tf.layers.dense(input_layer, self.params[0], name=name, kernel_initializer=kernel_initializer,
activation=activation)
class NoisyNetDense(object):
"""
A factorized Noisy Net layer
https://arxiv.org/abs/1706.10295.
"""
def __init__(self, params: List):
"""
:param params: list of [num_output_neurons]
"""
self.params = force_list(params)
self.sigma0 = 0.5
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None):
"""
returns a NoisyNet dense layer
:param input_layer: previous layer
:param name: layer name
:param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev.
:param activation: the activation function
:return: dense layer
"""
#TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every
# forward (either act or train, both for online and target networks).
# A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps)
num_inputs = input_layer.get_shape()[-1].value
num_outputs = self.params[0]
stddev = 1 / math.sqrt(num_inputs)
activation = activation if activation is not None else (lambda x: x)
if kernel_initializer is None:
kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev)
kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0)
else:
kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer
with tf.variable_scope(None, default_name=name):
weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs),
initializer=kernel_mean_initializer)
bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=tf.zeros_initializer())
weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs),
initializer=kernel_stddev_initializer)
bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,),
initializer=kernel_stddev_initializer)
bias_noise = self.f(tf.random_normal((num_outputs,)))
weight_noise = self.factorized_noise(num_inputs, num_outputs)
bias = bias_mean + bias_stddev * bias_noise
weight = weight_mean + weight_stddev * weight_noise
return activation(tf.matmul(input_layer, weight) + bias)
def factorized_noise(self, inputs, outputs):
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
# lighter algos (e.g. DQN) should not use it
noise1 = self.f(tf.random_normal((inputs, 1)))
noise2 = self.f(tf.random_normal((1, outputs)))
return tf.matmul(noise1, noise2)
@staticmethod
def f(values):
return tf.sqrt(tf.abs(values)) * tf.sign(values)
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
@@ -720,6 +589,14 @@ class TensorFlowArchitecture(Architecture):
"""
self.sess.run(assign_op, feed_dict={placeholder: value})
def set_is_training(self, state: bool):
"""
Set the phase of the network between training and testing
:param state: The current state (True = Training, False = Testing)
:return: None
"""
self.set_variable_value(self.assign_is_training, state, self.is_training_placeholder)
def reset_internal_memory(self):
"""
Reset any internal memory used by the network. For example, an LSTM internal state
@@ -728,4 +605,4 @@ class TensorFlowArchitecture(Architecture):
# initialize LSTM hidden states
if self.middleware.__class__.__name__ == 'LSTMMiddleware':
self.curr_rnn_c_in = self.middleware.c_init
self.curr_rnn_h_in = self.middleware.h_init
self.curr_rnn_h_in = self.middleware.h_init