1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

network_imporvements branch merge

This commit is contained in:
Shadi Endrawis
2018-10-02 13:41:46 +03:00
parent 72ea933384
commit 51726a5b80
110 changed files with 1639 additions and 1161 deletions

View File

@@ -15,20 +15,23 @@
#
from typing import List, Union
import copy
import numpy as np
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout, Dense
from rl_coach.architectures.tensorflow_components.layers import batchnorm_activation_dropout, Dense, \
BatchnormActivationDropout
from rl_coach.base_parameters import EmbedderScheme, NetworkComponentParameters
from rl_coach.core_types import InputEmbedding
from rl_coach.utils import force_list
class InputEmbedderParameters(NetworkComponentParameters):
def __init__(self, activation_function: str='relu', scheme: Union[List, EmbedderScheme]=EmbedderScheme.Medium,
batchnorm: bool=False, dropout=False, name: str='embedder', input_rescaling=None, input_offset=None,
input_clipping=None, dense_layer=Dense):
input_clipping=None, dense_layer=Dense, is_training=False):
super().__init__(dense_layer=dense_layer)
self.activation_function = activation_function
self.scheme = scheme
@@ -44,6 +47,7 @@ class InputEmbedderParameters(NetworkComponentParameters):
self.input_offset = input_offset
self.input_clipping = input_clipping
self.name = name
self.is_training = is_training
@property
def path(self):
@@ -61,7 +65,8 @@ class InputEmbedder(object):
"""
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=None, batchnorm: bool=False, dropout: bool=False,
name: str= "embedder", input_rescaling=1.0, input_offset=0.0, input_clipping=None, dense_layer=Dense):
name: str= "embedder", input_rescaling=1.0, input_offset=0.0, input_clipping=None, dense_layer=Dense,
is_training=False):
self.name = name
self.input_size = input_size
self.activation_function = activation_function
@@ -72,11 +77,29 @@ class InputEmbedder(object):
self.output = None
self.scheme = scheme
self.return_type = InputEmbedding
self.layers_params = []
self.layers = []
self.input_rescaling = input_rescaling
self.input_offset = input_offset
self.input_clipping = input_clipping
self.dense_layer = dense_layer
self.is_training = is_training
# layers order is conv -> batchnorm -> activation -> dropout
if isinstance(self.scheme, EmbedderScheme):
self.layers_params = copy.copy(self.schemes[self.scheme])
else:
self.layers_params = copy.copy(self.scheme)
# we allow adding batchnorm, dropout or activation functions after each layer.
# The motivation is to simplify the transition between a network with batchnorm and a network without
# batchnorm to a single flag (the same applies to activation function and dropout)
if self.batchnorm or self.activation_function or self.dropout:
for layer_idx in reversed(range(len(self.layers_params))):
self.layers_params.insert(layer_idx+1,
BatchnormActivationDropout(batchnorm=self.batchnorm,
activation_function=self.activation_function,
dropout_rate=self.dropout_rate))
def __call__(self, prev_input_placeholder=None):
with tf.variable_scope(self.get_name()):
@@ -102,19 +125,11 @@ class InputEmbedder(object):
self.layers.append(input_layer)
# layers order is conv -> batchnorm -> activation -> dropout
if isinstance(self.scheme, EmbedderScheme):
layers_params = self.schemes[self.scheme]
else:
layers_params = self.scheme
for idx, layer_params in enumerate(layers_params):
self.layers.append(
layer_params(input_layer=self.layers[-1], name='{}_{}'.format(layer_params.__class__.__name__, idx))
)
self.layers.extend(batchnorm_activation_dropout(self.layers[-1], self.batchnorm,
self.activation_function, self.dropout,
self.dropout_rate, idx))
for idx, layer_params in enumerate(self.layers_params):
self.layers.extend(force_list(
layer_params(input_layer=self.layers[-1], name='{}_{}'.format(layer_params.__class__.__name__, idx),
is_training=self.is_training)
))
self.output = tf.contrib.layers.flatten(self.layers[-1])
@@ -140,4 +155,14 @@ class InputEmbedder(object):
"configurations.")
def get_name(self):
return self.name
return self.name
def __str__(self):
result = []
if self.input_rescaling != 1.0 or self.input_offset != 0.0:
result.append('Input Normalization (scale = {}, offset = {})'.format(self.input_rescaling, self.input_offset))
result.extend([str(l) for l in self.layers_params])
if self.layers_params:
return '\n'.join(result)
else:
return 'No layers'