1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00

network_imporvements branch merge

This commit is contained in:
Shadi Endrawis
2018-10-02 13:41:46 +03:00
parent 72ea933384
commit 51726a5b80
110 changed files with 1639 additions and 1161 deletions

View File

@@ -16,27 +16,34 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.layers import Dense, batchnorm_activation_dropout
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import QActionStateValue
from rl_coach.spaces import SpacesDefinition, BoxActionSpace, DiscreteActionSpace
from rl_coach.utils import force_list
class RegressionHeadParameters(HeadParameters):
def __init__(self, activation_function: str ='relu', name: str='q_head_params', dense_layer=Dense):
def __init__(self, activation_function: str ='relu', name: str='q_head_params',
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
loss_weight: float = 1.0, dense_layer=Dense, scheme=[Dense(256), Dense(256)]):
super().__init__(parameterized_class=RegressionHead, activation_function=activation_function, name=name,
dense_layer=dense_layer)
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
loss_weight=loss_weight)
class RegressionHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
dense_layer=Dense, scheme=[Dense(256), Dense(256)]):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'regression_head'
self.scheme = scheme
self.layers = []
if isinstance(self.spaces.action, BoxActionSpace):
self.num_actions = self.spaces.action.shape[0]
elif isinstance(self.spaces.action, DiscreteActionSpace):
@@ -48,9 +55,18 @@ class RegressionHead(Head):
self.loss_type = tf.losses.mean_squared_error
def _build_module(self, input_layer):
self.fc1 = self.dense_layer(256)(input_layer)
self.fc2 = self.dense_layer(256)(self.fc1)
self.output = self.dense_layer(self.num_actions)(self.fc2, name='output')
self.layers.append(input_layer)
for idx, layer_params in enumerate(self.scheme):
self.layers.extend(force_list(
layer_params(input_layer=self.layers[-1], name='{}_{}'.format(layer_params.__class__.__name__, idx))
))
self.layers.append(self.dense_layer(self.num_actions)(self.layers[-1], name='output'))
self.output = self.layers[-1]
def __str__(self):
result = []
for layer in self.layers:
result.append(str(layer))
return '\n'.join(result)