mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
network_imporvements branch merge
This commit is contained in:
@@ -17,20 +17,25 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.tensorflow_components.heads.head import Head, normalized_columns_initializer, HeadParameters
|
||||
from rl_coach.base_parameters import AgentParameters
|
||||
from rl_coach.core_types import ActionProbabilities
|
||||
from rl_coach.exploration_policies.continuous_entropy import ContinuousEntropyParameters
|
||||
from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace, CompoundActionSpace
|
||||
from rl_coach.spaces import SpacesDefinition
|
||||
from rl_coach.utils import eps
|
||||
from rl_coach.utils import eps, indent_string
|
||||
|
||||
|
||||
class PolicyHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='tanh', name: str='policy_head_params', dense_layer=Dense):
|
||||
def __init__(self, activation_function: str ='tanh', name: str='policy_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=Dense):
|
||||
super().__init__(parameterized_class=PolicyHead, activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer)
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
|
||||
|
||||
|
||||
class PolicyHead(Head):
|
||||
@@ -112,7 +117,7 @@ class PolicyHead(Head):
|
||||
self.actions.append(tf.placeholder(tf.float32, [None, num_actions], name="actions"))
|
||||
|
||||
# output activation function
|
||||
if np.all(self.spaces.action.max_abs_range < np.inf):
|
||||
if np.all(action_space.max_abs_range < np.inf):
|
||||
# bounded actions
|
||||
self.output_scale = action_space.max_abs_range
|
||||
self.continuous_output_activation = self.activation_function
|
||||
@@ -158,3 +163,45 @@ class PolicyHead(Head):
|
||||
if self.action_penalty and self.action_penalty != 0:
|
||||
self.regularizations += [
|
||||
self.action_penalty * tf.reduce_mean(tf.square(pre_activation_policy_values_mean))]
|
||||
|
||||
def __str__(self):
|
||||
action_spaces = [self.spaces.action]
|
||||
if isinstance(self.spaces.action, CompoundActionSpace):
|
||||
action_spaces = self.spaces.action.sub_action_spaces
|
||||
|
||||
result = []
|
||||
for action_space_idx, action_space in enumerate(action_spaces):
|
||||
action_head_mean_result = []
|
||||
if isinstance(action_space, DiscreteActionSpace):
|
||||
# create a discrete action network (softmax probabilities output)
|
||||
action_head_mean_result.append("Dense (num outputs = {})".format(len(action_space.actions)))
|
||||
action_head_mean_result.append("Softmax")
|
||||
elif isinstance(action_space, BoxActionSpace):
|
||||
# create a continuous action network (bounded mean and stdev outputs)
|
||||
action_head_mean_result.append("Dense (num outputs = {})".format(action_space.shape))
|
||||
if np.all(action_space.max_abs_range < np.inf):
|
||||
# bounded actions
|
||||
action_head_mean_result.append("Activation (type = {})".format(self.activation_function.__name__))
|
||||
action_head_mean_result.append("Multiply (factor = {})".format(action_space.max_abs_range))
|
||||
|
||||
action_head_stdev_result = []
|
||||
if isinstance(self.exploration_policy, ContinuousEntropyParameters):
|
||||
action_head_stdev_result.append("Dense (num outputs = {})".format(action_space.shape))
|
||||
action_head_stdev_result.append("Softplus")
|
||||
|
||||
action_head_result = []
|
||||
if action_head_stdev_result:
|
||||
action_head_result.append("Mean Stream")
|
||||
action_head_result.append(indent_string('\n'.join(action_head_mean_result)))
|
||||
action_head_result.append("Stdev Stream")
|
||||
action_head_result.append(indent_string('\n'.join(action_head_stdev_result)))
|
||||
else:
|
||||
action_head_result.append('\n'.join(action_head_mean_result))
|
||||
|
||||
if len(action_spaces) > 1:
|
||||
result.append("Action head {}".format(action_space_idx))
|
||||
result.append(indent_string('\n'.join(action_head_result)))
|
||||
else:
|
||||
result.append('\n'.join(action_head_result))
|
||||
|
||||
return '\n'.join(result)
|
||||
|
||||
Reference in New Issue
Block a user