mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
network_imporvements branch merge
This commit is contained in:
@@ -17,7 +17,7 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters, normalized_columns_initializer
|
||||
from rl_coach.base_parameters import AgentParameters
|
||||
from rl_coach.core_types import ActionProbabilities
|
||||
@@ -27,9 +27,13 @@ from rl_coach.utils import eps
|
||||
|
||||
|
||||
class PPOHeadParameters(HeadParameters):
|
||||
def __init__(self, activation_function: str ='tanh', name: str='ppo_head_params', dense_layer=Dense):
|
||||
def __init__(self, activation_function: str ='tanh', name: str='ppo_head_params',
|
||||
num_output_head_copies: int = 1, rescale_gradient_from_head_by_factor: float = 1.0,
|
||||
loss_weight: float = 1.0, dense_layer=Dense):
|
||||
super().__init__(parameterized_class=PPOHead, activation_function=activation_function, name=name,
|
||||
dense_layer=dense_layer)
|
||||
dense_layer=dense_layer, num_output_head_copies=num_output_head_copies,
|
||||
rescale_gradient_from_head_by_factor=rescale_gradient_from_head_by_factor,
|
||||
loss_weight=loss_weight)
|
||||
|
||||
|
||||
class PPOHead(Head):
|
||||
@@ -146,3 +150,15 @@ class PPOHead(Head):
|
||||
self.old_policy_distribution = tf.contrib.distributions.MultivariateNormalDiag(self.old_policy_mean, self.old_policy_std + eps)
|
||||
|
||||
self.output = [self.policy_mean, self.policy_std]
|
||||
|
||||
def __str__(self):
|
||||
action_head_mean_result = []
|
||||
if isinstance(self.spaces.action, DiscreteActionSpace):
|
||||
# create a discrete action network (softmax probabilities output)
|
||||
action_head_mean_result.append("Dense (num outputs = {})".format(len(self.spaces.action.actions)))
|
||||
action_head_mean_result.append("Softmax")
|
||||
elif isinstance(self.spaces.action, BoxActionSpace):
|
||||
# create a continuous action network (bounded mean and stdev outputs)
|
||||
action_head_mean_result.append("Dense (num outputs = {})".format(self.spaces.action.shape))
|
||||
|
||||
return '\n'.join(action_head_mean_result)
|
||||
|
||||
Reference in New Issue
Block a user