mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
network_imporvements branch merge
This commit is contained in:
@@ -18,19 +18,21 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout, Dense
|
||||
from rl_coach.architectures.tensorflow_components.layers import batchnorm_activation_dropout, Dense
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware, MiddlewareParameters
|
||||
from rl_coach.base_parameters import MiddlewareScheme
|
||||
from rl_coach.core_types import Middleware_LSTM_Embedding
|
||||
from rl_coach.utils import force_list
|
||||
|
||||
|
||||
class LSTMMiddlewareParameters(MiddlewareParameters):
|
||||
def __init__(self, activation_function='relu', number_of_lstm_cells=256,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
name="middleware_lstm_embedder", dense_layer=Dense):
|
||||
name="middleware_lstm_embedder", dense_layer=Dense, is_training=False):
|
||||
super().__init__(parameterized_class=LSTMMiddleware, activation_function=activation_function,
|
||||
scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name, dense_layer=dense_layer)
|
||||
scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name, dense_layer=dense_layer,
|
||||
is_training=is_training)
|
||||
self.number_of_lstm_cells = number_of_lstm_cells
|
||||
|
||||
|
||||
@@ -38,9 +40,9 @@ class LSTMMiddleware(Middleware):
|
||||
def __init__(self, activation_function=tf.nn.relu, number_of_lstm_cells: int=256,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
name="middleware_lstm_embedder", dense_layer=Dense):
|
||||
name="middleware_lstm_embedder", dense_layer=Dense, is_training=False):
|
||||
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
|
||||
dropout=dropout, scheme=scheme, name=name, dense_layer=dense_layer)
|
||||
dropout=dropout, scheme=scheme, name=name, dense_layer=dense_layer, is_training=is_training)
|
||||
self.return_type = Middleware_LSTM_Embedding
|
||||
self.number_of_lstm_cells = number_of_lstm_cells
|
||||
self.layers = []
|
||||
@@ -57,19 +59,12 @@ class LSTMMiddleware(Middleware):
|
||||
|
||||
self.layers.append(self.input)
|
||||
|
||||
# optionally insert some dense layers before the LSTM
|
||||
if isinstance(self.scheme, MiddlewareScheme):
|
||||
layers_params = self.schemes[self.scheme]
|
||||
else:
|
||||
layers_params = self.scheme
|
||||
for idx, layer_params in enumerate(layers_params):
|
||||
self.layers.append(
|
||||
tf.layers.dense(self.layers[-1], layer_params[0], name='fc{}'.format(idx))
|
||||
)
|
||||
|
||||
self.layers.extend(batchnorm_activation_dropout(self.layers[-1], self.batchnorm,
|
||||
self.activation_function, self.dropout,
|
||||
self.dropout_rate, idx))
|
||||
# optionally insert some layers before the LSTM
|
||||
for idx, layer_params in enumerate(self.layers_params):
|
||||
self.layers.extend(force_list(
|
||||
layer_params(self.layers[-1], name='fc{}'.format(idx),
|
||||
is_training=self.is_training)
|
||||
))
|
||||
|
||||
# add the LSTM layer
|
||||
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(self.number_of_lstm_cells, state_is_tuple=True)
|
||||
@@ -97,20 +92,20 @@ class LSTMMiddleware(Middleware):
|
||||
# ppo
|
||||
MiddlewareScheme.Shallow:
|
||||
[
|
||||
[64]
|
||||
self.dense_layer(64)
|
||||
],
|
||||
|
||||
# dqn
|
||||
MiddlewareScheme.Medium:
|
||||
[
|
||||
[512]
|
||||
self.dense_layer(512)
|
||||
],
|
||||
|
||||
MiddlewareScheme.Deep: \
|
||||
[
|
||||
[128],
|
||||
[128],
|
||||
[128]
|
||||
self.dense_layer(128),
|
||||
self.dense_layer(128),
|
||||
self.dense_layer(128)
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user