mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
network_imporvements branch merge
This commit is contained in:
@@ -13,25 +13,27 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import copy
|
||||
from typing import Type, Union, List
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
||||
from rl_coach.base_parameters import MiddlewareScheme, Parameters, NetworkComponentParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense, BatchnormActivationDropout
|
||||
from rl_coach.base_parameters import MiddlewareScheme, NetworkComponentParameters
|
||||
from rl_coach.core_types import MiddlewareEmbedding
|
||||
|
||||
|
||||
class MiddlewareParameters(NetworkComponentParameters):
|
||||
def __init__(self, parameterized_class: Type['Middleware'],
|
||||
activation_function: str='relu', scheme: Union[List, MiddlewareScheme]=MiddlewareScheme.Medium,
|
||||
batchnorm: bool=False, dropout: bool=False, name='middleware', dense_layer=Dense):
|
||||
batchnorm: bool=False, dropout: bool=False, name='middleware', dense_layer=Dense, is_training=False):
|
||||
super().__init__(dense_layer=dense_layer)
|
||||
self.activation_function = activation_function
|
||||
self.scheme = scheme
|
||||
self.batchnorm = batchnorm
|
||||
self.dropout = dropout
|
||||
self.name = name
|
||||
self.is_training = is_training
|
||||
self.parameterized_class_name = parameterized_class.__name__
|
||||
|
||||
|
||||
@@ -43,7 +45,8 @@ class Middleware(object):
|
||||
"""
|
||||
def __init__(self, activation_function=tf.nn.relu,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False, name="middleware_embedder", dense_layer=Dense):
|
||||
batchnorm: bool = False, dropout: bool = False, name="middleware_embedder", dense_layer=Dense,
|
||||
is_training=False):
|
||||
self.name = name
|
||||
self.input = None
|
||||
self.output = None
|
||||
@@ -54,6 +57,23 @@ class Middleware(object):
|
||||
self.scheme = scheme
|
||||
self.return_type = MiddlewareEmbedding
|
||||
self.dense_layer = dense_layer
|
||||
self.is_training = is_training
|
||||
|
||||
# layers order is conv -> batchnorm -> activation -> dropout
|
||||
if isinstance(self.scheme, MiddlewareScheme):
|
||||
self.layers_params = copy.copy(self.schemes[self.scheme])
|
||||
else:
|
||||
self.layers_params = copy.copy(self.scheme)
|
||||
|
||||
# we allow adding batchnorm, dropout or activation functions after each layer.
|
||||
# The motivation is to simplify the transition between a network with batchnorm and a network without
|
||||
# batchnorm to a single flag (the same applies to activation function and dropout)
|
||||
if self.batchnorm or self.activation_function or self.dropout:
|
||||
for layer_idx in reversed(range(len(self.layers_params))):
|
||||
self.layers_params.insert(layer_idx+1,
|
||||
BatchnormActivationDropout(batchnorm=self.batchnorm,
|
||||
activation_function=self.activation_function,
|
||||
dropout_rate=self.dropout_rate))
|
||||
|
||||
def __call__(self, input_layer):
|
||||
with tf.variable_scope(self.get_name()):
|
||||
@@ -72,3 +92,10 @@ class Middleware(object):
|
||||
def schemes(self):
|
||||
raise NotImplementedError("Inheriting middleware must define schemes matching its allowed default "
|
||||
"configurations.")
|
||||
|
||||
def __str__(self):
|
||||
result = [str(l) for l in self.layers_params]
|
||||
if self.layers_params:
|
||||
return '\n'.join(result)
|
||||
else:
|
||||
return 'No layers'
|
||||
|
||||
Reference in New Issue
Block a user