1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

OPE: Weighted Importance Sampling (#299)

This commit is contained in:
Gal Leibovich
2019-05-02 19:25:42 +03:00
committed by GitHub
parent 74db141d5e
commit 582921ffe3
8 changed files with 222 additions and 51 deletions

View File

@@ -522,6 +522,7 @@ class Agent(AgentInterface):
self.agent_logger.create_signal_value('Inverse Propensity Score', np.nan, overwrite=False)
self.agent_logger.create_signal_value('Direct Method Reward', np.nan, overwrite=False)
self.agent_logger.create_signal_value('Doubly Robust', np.nan, overwrite=False)
self.agent_logger.create_signal_value('Weighted Importance Sampling', np.nan, overwrite=False)
self.agent_logger.create_signal_value('Sequential Doubly Robust', np.nan, overwrite=False)
for signal in self.episode_signals:

View File

@@ -20,6 +20,7 @@ import numpy as np
from rl_coach.agents.agent import Agent
from rl_coach.core_types import ActionInfo, StateType, Batch
from rl_coach.filters.filter import NoInputFilter
from rl_coach.logger import screen
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplay
from rl_coach.spaces import DiscreteActionSpace
@@ -108,18 +109,18 @@ class ValueOptimizationAgent(Agent):
:return: None
"""
assert self.ope_manager
dataset_as_episodes = self.call_memory('get_all_complete_episodes_from_to',
(self.call_memory('get_last_training_set_episode_id') + 1,
self.call_memory('num_complete_episodes')))
if len(dataset_as_episodes) == 0:
raise ValueError('train_to_eval_ratio is too high causing the evaluation set to be empty. '
'Consider decreasing its value.')
ips, dm, dr, seq_dr = self.ope_manager.evaluate(
dataset_as_episodes=dataset_as_episodes,
if not isinstance(self.pre_network_filter, NoInputFilter) and len(self.pre_network_filter.reward_filters) != 0:
raise ValueError("Defining a pre-network reward filter when OPEs are calculated will result in a mismatch "
"between q values (which are scaled), and actual rewards, which are not. It is advisable "
"to use an input_filter, if possible, instead, which will filter the transitions directly "
"in the replay buffer, affecting both the q_values and the rewards themselves. ")
ips, dm, dr, seq_dr, wis = self.ope_manager.evaluate(
evaluation_dataset_as_episodes=self.memory.evaluation_dataset_as_episodes,
evaluation_dataset_as_transitions=self.memory.evaluation_dataset_as_transitions,
batch_size=self.ap.network_wrappers['main'].batch_size,
discount_factor=self.ap.algorithm.discount,
reward_model=self.networks['reward_model'].online_network,
q_network=self.networks['main'].online_network,
network_keys=list(self.ap.network_wrappers['main'].input_embedders_parameters.keys()))
@@ -129,6 +130,7 @@ class ValueOptimizationAgent(Agent):
log['IPS'] = ips
log['DM'] = dm
log['DR'] = dr
log['WIS'] = wis
log['Sequential-DR'] = seq_dr
screen.log_dict(log, prefix='Off-Policy Evaluation')
@@ -138,6 +140,7 @@ class ValueOptimizationAgent(Agent):
self.agent_logger.create_signal_value('Direct Method Reward', dm)
self.agent_logger.create_signal_value('Doubly Robust', dr)
self.agent_logger.create_signal_value('Sequential Doubly Robust', seq_dr)
self.agent_logger.create_signal_value('Weighted Importance Sampling', wis)
def get_reward_model_loss(self, batch: Batch):
network_keys = self.ap.network_wrappers['reward_model'].input_embedders_parameters.keys()

View File

@@ -127,7 +127,10 @@ class BatchRLGraphManager(BasicRLGraphManager):
if self.env_params is not None and not self.agent_params.memory.load_memory_from_file_path:
self.heatup(self.heatup_steps)
self.improve_reward_model()
# from this point onwards, the dataset cannot be changed anymore. Allows for performance improvements.
self.level_managers[0].agents['agent'].memory.freeze()
self.initialize_ope_models_and_stats()
# improve
if self.task_parameters.task_index is not None:
@@ -163,13 +166,26 @@ class BatchRLGraphManager(BasicRLGraphManager):
# we might want to evaluate vs. the simulator every now and then.
break
def improve_reward_model(self):
def initialize_ope_models_and_stats(self):
"""
:return:
"""
agent = self.level_managers[0].agents['agent']
screen.log_title("Training a regression model for estimating MDP rewards")
self.level_managers[0].agents['agent'].improve_reward_model(epochs=self.reward_model_num_epochs)
agent.improve_reward_model(epochs=self.reward_model_num_epochs)
# prepare dataset to be consumed in the expected formats for OPE
agent.memory.prepare_evaluation_dataset()
screen.log_title("Collecting static statistics for OPE")
agent.ope_manager.gather_static_shared_stats(evaluation_dataset_as_transitions=
agent.memory.evaluation_dataset_as_transitions,
batch_size=agent.ap.network_wrappers['main'].batch_size,
reward_model=agent.networks['reward_model'].online_network,
network_keys=list(agent.ap.network_wrappers['main'].
input_embedders_parameters.keys()))
def run_off_policy_evaluation(self):
"""

View File

@@ -15,6 +15,8 @@
# limitations under the License.
#
import ast
from copy import deepcopy
import math
import pandas as pd
@@ -64,6 +66,10 @@ class EpisodicExperienceReplay(Memory):
self.last_training_set_episode_id = None # used in batch-rl
self.last_training_set_transition_id = None # used in batch-rl
self.train_to_eval_ratio = train_to_eval_ratio # used in batch-rl
self.evaluation_dataset_as_episodes = None
self.evaluation_dataset_as_transitions = None
self.frozen = False
def length(self, lock: bool = False) -> int:
"""
@@ -137,6 +143,8 @@ class EpisodicExperienceReplay(Memory):
Shuffle all the episodes in the replay buffer
:return:
"""
self.assert_not_frozen()
random.shuffle(self._buffer)
self.transitions = [t for e in self._buffer for t in e.transitions]
@@ -256,6 +264,7 @@ class EpisodicExperienceReplay(Memory):
:param transition: a transition to store
:return: None
"""
self.assert_not_frozen()
# Calling super.store() so that in case a memory backend is used, the memory backend can store this transition.
super().store(transition)
@@ -281,6 +290,8 @@ class EpisodicExperienceReplay(Memory):
:param episode: the new episode to store
:return: None
"""
self.assert_not_frozen()
# Calling super.store() so that in case a memory backend is used, the memory backend can store this episode.
super().store_episode(episode)
@@ -322,6 +333,8 @@ class EpisodicExperienceReplay(Memory):
:param episode_index: the index of the episode to remove
:return: None
"""
self.assert_not_frozen()
if len(self._buffer) > episode_index:
episode_length = self._buffer[episode_index].length()
self._length -= 1
@@ -381,6 +394,7 @@ class EpisodicExperienceReplay(Memory):
Clean the memory by removing all the episodes
:return: None
"""
self.assert_not_frozen()
self.reader_writer_lock.lock_writing_and_reading()
self.transitions = []
@@ -409,6 +423,8 @@ class EpisodicExperienceReplay(Memory):
The csv file is assumed to include a list of transitions.
:param csv_dataset: A construct which holds the dataset parameters
"""
self.assert_not_frozen()
df = pd.read_csv(csv_dataset.filepath)
if len(df) > self.max_size[1]:
screen.warning("Warning! The number of transitions to load into the replay buffer ({}) is "
@@ -446,3 +462,34 @@ class EpisodicExperienceReplay(Memory):
progress_bar.close()
self.shuffle_episodes()
def freeze(self):
"""
Freezing the replay buffer does not allow any new transitions to be added to the memory.
Useful when working with a dataset (e.g. batch-rl or imitation learning).
:return: None
"""
self.frozen = True
def assert_not_frozen(self):
"""
Check that the memory is not frozen, and can be changed.
:return:
"""
assert self.frozen is False, "Memory is frozen, and cannot be changed."
def prepare_evaluation_dataset(self):
"""
Gather the memory content that will be used for off-policy evaluation in episodes and transitions format
:return:
"""
self.evaluation_dataset_as_episodes = deepcopy(
self.get_all_complete_episodes_from_to(self.get_last_training_set_episode_id() + 1,
self.num_complete_episodes()))
if len(self.evaluation_dataset_as_episodes) == 0:
raise ValueError('train_to_eval_ratio is too high causing the evaluation set to be empty. '
'Consider decreasing its value.')
self.evaluation_dataset_as_transitions = [t for e in self.evaluation_dataset_as_episodes
for t in e.transitions]

View File

@@ -54,6 +54,7 @@ class ExperienceReplay(Memory):
self.allow_duplicates_in_batch_sampling = allow_duplicates_in_batch_sampling
self.reader_writer_lock = ReaderWriterLock()
self.frozen = False
def length(self) -> int:
"""
@@ -135,6 +136,8 @@ class ExperienceReplay(Memory):
locks and then calls store with lock = True
:return: None
"""
self.assert_not_frozen()
# Calling super.store() so that in case a memory backend is used, the memory backend can store this transition.
super().store(transition)
if lock:
@@ -175,6 +178,8 @@ class ExperienceReplay(Memory):
:param transition_index: the index of the transition to remove
:return: None
"""
self.assert_not_frozen()
if lock:
self.reader_writer_lock.lock_writing_and_reading()
@@ -207,6 +212,8 @@ class ExperienceReplay(Memory):
Clean the memory by removing all the episodes
:return: None
"""
self.assert_not_frozen()
if lock:
self.reader_writer_lock.lock_writing_and_reading()
@@ -242,6 +249,8 @@ class ExperienceReplay(Memory):
The pickle file is assumed to include a list of transitions.
:param file_path: The path to a pickle file to restore
"""
self.assert_not_frozen()
with open(file_path, 'rb') as file:
transitions = pickle.load(file)
num_transitions = len(transitions)
@@ -260,3 +269,17 @@ class ExperienceReplay(Memory):
progress_bar.close()
def freeze(self):
"""
Freezing the replay buffer does not allow any new transitions to be added to the memory.
Useful when working with a dataset (e.g. batch-rl or imitation learning).
:return: None
"""
self.frozen = True
def assert_not_frozen(self):
"""
Check that the memory is not frozen, and can be changed.
:return:
"""
assert self.frozen is False, "Memory is frozen, and cannot be changed."

View File

@@ -26,56 +26,60 @@ from rl_coach.off_policy_evaluators.rl.sequential_doubly_robust import Sequentia
from rl_coach.core_types import Transition
from rl_coach.off_policy_evaluators.rl.weighted_importance_sampling import WeightedImportanceSampling
OpeSharedStats = namedtuple("OpeSharedStats", ['all_reward_model_rewards', 'all_policy_probs',
'all_v_values_reward_model_based', 'all_rewards', 'all_actions',
'all_old_policy_probs', 'new_policy_prob', 'rho_all_dataset'])
OpeEstimation = namedtuple("OpeEstimation", ['ips', 'dm', 'dr', 'seq_dr'])
OpeEstimation = namedtuple("OpeEstimation", ['ips', 'dm', 'dr', 'seq_dr', 'wis'])
class OpeManager(object):
def __init__(self):
self.evaluation_dataset_as_transitions = None
self.doubly_robust = DoublyRobust()
self.sequential_doubly_robust = SequentialDoublyRobust()
self.weighted_importance_sampling = WeightedImportanceSampling()
self.all_reward_model_rewards = None
self.all_old_policy_probs = None
self.all_rewards = None
self.all_actions = None
self.is_gathered_static_shared_data = False
@staticmethod
def _prepare_ope_shared_stats(dataset_as_transitions: List[Transition], batch_size: int,
reward_model: Architecture, q_network: Architecture,
network_keys: List) -> OpeSharedStats:
def _prepare_ope_shared_stats(self, evaluation_dataset_as_transitions: List[Transition], batch_size: int,
q_network: Architecture, network_keys: List) -> OpeSharedStats:
"""
Do the preparations needed for different estimators.
Some of the calcuations are shared, so we centralize all the work here.
:param dataset_as_transitions: The evaluation dataset in the form of transitions.
:param evaluation_dataset_as_transitions: The evaluation dataset in the form of transitions.
:param batch_size: The batch size to use.
:param reward_model: A reward model to be used by DR
:param q_network: The Q network whose its policy we evaluate.
:param network_keys: The network keys used for feeding the neural networks.
:return:
"""
# IPS
all_reward_model_rewards, all_policy_probs, all_old_policy_probs = [], [], []
all_v_values_reward_model_based, all_v_values_q_model_based, all_rewards, all_actions = [], [], [], []
for i in range(math.ceil(len(dataset_as_transitions) / batch_size)):
batch = dataset_as_transitions[i * batch_size: (i + 1) * batch_size]
assert self.is_gathered_static_shared_data, "gather_static_shared_stats() should be called once before " \
"calling _prepare_ope_shared_stats()"
# IPS
all_policy_probs = []
all_v_values_reward_model_based, all_v_values_q_model_based = [], []
for i in range(math.ceil(len(evaluation_dataset_as_transitions) / batch_size)):
batch = evaluation_dataset_as_transitions[i * batch_size: (i + 1) * batch_size]
batch_for_inference = Batch(batch)
all_reward_model_rewards.append(reward_model.predict(
batch_for_inference.states(network_keys)))
# we always use the first Q head to calculate OPEs. might want to change this in the future.
# for instance, this means that for bootstrapped we always use the first QHead to calculate the OPEs.
# for instance, this means that for bootstrapped dqn we always use the first QHead to calculate the OPEs.
q_values, sm_values = q_network.predict(batch_for_inference.states(network_keys),
outputs=[q_network.output_heads[0].q_values,
q_network.output_heads[0].softmax])
all_policy_probs.append(sm_values)
all_v_values_reward_model_based.append(np.sum(all_policy_probs[-1] * all_reward_model_rewards[-1], axis=1))
all_v_values_reward_model_based.append(np.sum(all_policy_probs[-1] * self.all_reward_model_rewards[i],
axis=1))
all_v_values_q_model_based.append(np.sum(all_policy_probs[-1] * q_values, axis=1))
all_rewards.append(batch_for_inference.rewards())
all_actions.append(batch_for_inference.actions())
all_old_policy_probs.append(batch_for_inference.info('all_action_probabilities')
[range(len(batch_for_inference.actions())), batch_for_inference.actions()])
for j, t in enumerate(batch):
t.update_info({
@@ -85,26 +89,50 @@ class OpeManager(object):
})
all_reward_model_rewards = np.concatenate(all_reward_model_rewards, axis=0)
all_policy_probs = np.concatenate(all_policy_probs, axis=0)
all_v_values_reward_model_based = np.concatenate(all_v_values_reward_model_based, axis=0)
all_rewards = np.concatenate(all_rewards, axis=0)
all_actions = np.concatenate(all_actions, axis=0)
all_old_policy_probs = np.concatenate(all_old_policy_probs, axis=0)
# generate model probabilities
new_policy_prob = all_policy_probs[np.arange(all_actions.shape[0]), all_actions]
rho_all_dataset = new_policy_prob / all_old_policy_probs
new_policy_prob = all_policy_probs[np.arange(self.all_actions.shape[0]), self.all_actions]
rho_all_dataset = new_policy_prob / self.all_old_policy_probs
return OpeSharedStats(all_reward_model_rewards, all_policy_probs, all_v_values_reward_model_based,
all_rewards, all_actions, all_old_policy_probs, new_policy_prob, rho_all_dataset)
return OpeSharedStats(self.all_reward_model_rewards, all_policy_probs, all_v_values_reward_model_based,
self.all_rewards, self.all_actions, self.all_old_policy_probs, new_policy_prob,
rho_all_dataset)
def evaluate(self, dataset_as_episodes: List[Episode], batch_size: int, discount_factor: float,
reward_model: Architecture, q_network: Architecture, network_keys: List) -> OpeEstimation:
def gather_static_shared_stats(self, evaluation_dataset_as_transitions: List[Transition], batch_size: int,
reward_model: Architecture, network_keys: List) -> None:
all_reward_model_rewards = []
all_old_policy_probs = []
all_rewards = []
all_actions = []
for i in range(math.ceil(len(evaluation_dataset_as_transitions) / batch_size)):
batch = evaluation_dataset_as_transitions[i * batch_size: (i + 1) * batch_size]
batch_for_inference = Batch(batch)
all_reward_model_rewards.append(reward_model.predict(batch_for_inference.states(network_keys)))
all_rewards.append(batch_for_inference.rewards())
all_actions.append(batch_for_inference.actions())
all_old_policy_probs.append(batch_for_inference.info('all_action_probabilities')
[range(len(batch_for_inference.actions())),
batch_for_inference.actions()])
self.all_reward_model_rewards = np.concatenate(all_reward_model_rewards, axis=0)
self.all_old_policy_probs = np.concatenate(all_old_policy_probs, axis=0)
self.all_rewards = np.concatenate(all_rewards, axis=0)
self.all_actions = np.concatenate(all_actions, axis=0)
# mark that static shared data was collected and ready to be used
self.is_gathered_static_shared_data = True
def evaluate(self, evaluation_dataset_as_episodes: List[Episode], evaluation_dataset_as_transitions: List[Transition], batch_size: int,
discount_factor: float, q_network: Architecture, network_keys: List) -> OpeEstimation:
"""
Run all the OPEs and get estimations of the current policy performance based on the evaluation dataset.
:param dataset_as_episodes: The evaluation dataset.
:param evaluation_dataset_as_episodes: The evaluation dataset in a form of episodes.
:param evaluation_dataset_as_transitions: The evaluation dataset in a form of transitions.
:param batch_size: Batch size to use for the estimators.
:param discount_factor: The standard RL discount factor.
:param reward_model: A reward model to be used by DR
@@ -113,12 +141,12 @@ class OpeManager(object):
:return: An OpeEstimation tuple which groups together all the OPE estimations
"""
# TODO this seems kind of slow, review performance
dataset_as_transitions = [t for e in dataset_as_episodes for t in e.transitions]
ope_shared_stats = self._prepare_ope_shared_stats(dataset_as_transitions, batch_size, reward_model,
q_network, network_keys)
ope_shared_stats = self._prepare_ope_shared_stats(evaluation_dataset_as_transitions, batch_size, q_network,
network_keys)
ips, dm, dr = self.doubly_robust.evaluate(ope_shared_stats)
seq_dr = self.sequential_doubly_robust.evaluate(dataset_as_episodes, discount_factor)
return OpeEstimation(ips, dm, dr, seq_dr)
seq_dr = self.sequential_doubly_robust.evaluate(evaluation_dataset_as_episodes, discount_factor)
wis = self.weighted_importance_sampling.evaluate(evaluation_dataset_as_episodes)
return OpeEstimation(ips, dm, dr, seq_dr, wis)

View File

@@ -22,7 +22,7 @@ from rl_coach.core_types import Episode
class SequentialDoublyRobust(object):
@staticmethod
def evaluate(dataset_as_episodes: List[Episode], discount_factor: float) -> float:
def evaluate(evaluation_dataset_as_episodes: List[Episode], discount_factor: float) -> float:
"""
Run the off-policy evaluator to get a score for the goodness of the new policy, based on the dataset,
which was collected using other policy(ies).
@@ -35,7 +35,7 @@ class SequentialDoublyRobust(object):
# Sequential Doubly Robust
per_episode_seq_dr = []
for episode in dataset_as_episodes:
for episode in evaluation_dataset_as_episodes:
episode_seq_dr = 0
for transition in episode.transitions:
rho = transition.info['softmax_policy_prob'][transition.action] / \

View File

@@ -0,0 +1,53 @@
#
# Copyright (c) 2019 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import numpy as np
from rl_coach.core_types import Episode
class WeightedImportanceSampling(object):
# TODO rename and add PDIS
@staticmethod
def evaluate(evaluation_dataset_as_episodes: List[Episode]) -> float:
"""
Run the off-policy evaluator to get a score for the goodness of the new policy, based on the dataset,
which was collected using other policy(ies).
References:
- Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction. Chapter 5.5.
- https://people.cs.umass.edu/~pthomas/papers/Thomas2015c.pdf
- http://videolectures.net/deeplearning2017_thomas_safe_rl/
:return: the evaluation score
"""
# Weighted Importance Sampling
per_episode_w_i = []
for episode in evaluation_dataset_as_episodes:
w_i = 1
for transition in episode.transitions:
w_i *= transition.info['softmax_policy_prob'][transition.action] / \
transition.info['all_action_probabilities'][transition.action]
per_episode_w_i.append(w_i)
total_w_i_sum_across_episodes = sum(per_episode_w_i)
wis = 0
for i, episode in enumerate(evaluation_dataset_as_episodes):
wis += per_episode_w_i[i]/total_w_i_sum_across_episodes * episode.transitions[0].n_step_discounted_rewards
return wis