mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
moving the docs to github
This commit is contained in:
38
docs_raw/docs/contributing/add_agent.md
Normal file
38
docs_raw/docs/contributing/add_agent.md
Normal file
@@ -0,0 +1,38 @@
|
||||
<!-- language-all: python -->
|
||||
|
||||
Coach's modularity makes adding an agent a simple and clean task, that involves the following steps:
|
||||
|
||||
1. Implement your algorithm in a new file under the agents directory. The agent can inherit base classes such as **ValueOptimizationAgent** or **ActorCriticAgent**, or the more generic **Agent** base class.
|
||||
|
||||
* **ValueOptimizationAgent**, **PolicyOptimizationAgent** and **Agent** are abstract classes.
|
||||
learn_from_batch() should be overriden with the desired behavior for the algorithm being implemented. If deciding to inherit from **Agent**, also choose_action() should be overriden.
|
||||
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
"""
|
||||
Given a batch of transitions, calculates their target values and updates the network.
|
||||
:param batch: A list of transitions
|
||||
:return: The loss of the training
|
||||
"""
|
||||
pass
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
"""
|
||||
choose an action to act with in the current episode being played. Different behavior might be exhibited when training
|
||||
or testing.
|
||||
|
||||
:param curr_state: the current state to act upon.
|
||||
:param phase: the current phase: training or testing.
|
||||
:return: chosen action, some action value describing the action (q-value, probability, etc)
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
|
||||
* Make sure to add your new agent to **agents/\_\_init\_\_.py**
|
||||
|
||||
2. Implement your agent's specific network head, if needed, at the implementation for the framework of your choice. For example **architectures/neon_components/heads.py**. The head will inherit the generic base class Head.
|
||||
A new output type should be added to configurations.py, and a mapping between the new head and output type should be defined in the get_output_head() function at **architectures/neon_components/general_network.py**
|
||||
3. Define a new configuration class at configurations.py, which includes the new agent name in the **type** field, the new output type in the **output_types** field, and assigning default values to hyperparameters.
|
||||
4. (Optional) Define a preset using the new agent type with a given environment, and the hyperparameters that should be used for training on that environment.
|
||||
|
||||
70
docs_raw/docs/contributing/add_env.md
Normal file
70
docs_raw/docs/contributing/add_env.md
Normal file
@@ -0,0 +1,70 @@
|
||||
Adding a new environment to Coach is as easy as solving CartPole.
|
||||
|
||||
There are a few simple steps to follow, and we will walk through them one by one.
|
||||
|
||||
1. Coach defines a simple API for implementing a new environment which is defined in environment/environment_wrapper.py.
|
||||
There are several functions to implement, but only some of them are mandatory.
|
||||
|
||||
Here are the important ones:
|
||||
|
||||
def _take_action(self, action_idx):
|
||||
"""
|
||||
An environment dependent function that sends an action to the simulator.
|
||||
:param action_idx: the action to perform on the environment.
|
||||
:return: None
|
||||
"""
|
||||
pass
|
||||
|
||||
def _preprocess_observation(self, observation):
|
||||
"""
|
||||
Do initial observation preprocessing such as cropping, rgb2gray, rescale etc.
|
||||
Implementing this function is optional.
|
||||
:param observation: a raw observation from the environment
|
||||
:return: the preprocessed observation
|
||||
"""
|
||||
return observation
|
||||
|
||||
def _update_state(self):
|
||||
"""
|
||||
Updates the state from the environment.
|
||||
Should update self.observation, self.reward, self.done, self.measurements and self.info
|
||||
:return: None
|
||||
"""
|
||||
pass
|
||||
|
||||
def _restart_environment_episode(self, force_environment_reset=False):
|
||||
"""
|
||||
:param force_environment_reset: Force the environment to reset even if the episode is not done yet.
|
||||
:return:
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_rendered_image(self):
|
||||
"""
|
||||
Return a numpy array containing the image that will be rendered to the screen.
|
||||
This can be different from the observation. For example, mujoco's observation is a measurements vector.
|
||||
:return: numpy array containing the image that will be rendered to the screen
|
||||
"""
|
||||
return self.observation
|
||||
|
||||
|
||||
2. Make sure to import the environment in environments/\_\_init\_\_.py:
|
||||
|
||||
from doom_environment_wrapper import *
|
||||
|
||||
Also, a new entry should be added to the EnvTypes enum mapping the environment name to the wrapper's class name:
|
||||
|
||||
Doom = "DoomEnvironmentWrapper"
|
||||
|
||||
|
||||
3. In addition a new configuration class should be implemented for defining the environment's parameters and placed in configurations.py.
|
||||
For instance, the following is used for Doom:
|
||||
|
||||
class Doom(EnvironmentParameters):
|
||||
type = 'Doom'
|
||||
frame_skip = 4
|
||||
observation_stack_size = 3
|
||||
desired_observation_height = 60
|
||||
desired_observation_width = 76
|
||||
|
||||
4. And that's it, you're done. Now just add a new preset with your newly created environment, and start training an agent on top of it.
|
||||
Reference in New Issue
Block a user