1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00

Add tensor input type for arbitrary dimensional observation (#125)

* Allow arbitrary dimensional observation (non vector or image)
* Added creating PlanarMapsObservationSpace to GymEnvironment when number of channels is not 1 or 3
This commit is contained in:
Sina Afrooze
2018-11-19 06:41:12 -08:00
committed by Gal Leibovich
parent 7ba1a4393f
commit 67a90ee87e
10 changed files with 194 additions and 24 deletions

View File

@@ -1,4 +1,5 @@
from .image_embedder import ImageEmbedder
from .vector_embedder import VectorEmbedder
from .tensor_embedder import TensorEmbedder
__all__ = ['ImageEmbedder', 'VectorEmbedder']
__all__ = ['ImageEmbedder', 'VectorEmbedder', 'TensorEmbedder']

View File

@@ -0,0 +1,52 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.layers import Conv2d, Dense
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedder
from rl_coach.base_parameters import EmbedderScheme
from rl_coach.core_types import InputTensorEmbedding
class TensorEmbedder(InputEmbedder):
"""
A tensor embedder is an input embedder that takes a tensor with arbitrary dimension and produces a vector
embedding by passing it through a neural network. An example is video data or 3D image data (i.e. 4D tensors)
or other type of data that is more than 1 dimension (i.e. not vector) but is not an image.
NOTE: There are no pre-defined schemes for tensor embedder. User must define a custom scheme by passing
a callable object as InputEmbedderParameters.scheme when defining the respective preset. This callable
object must accept a single input, the normalized observation, and return a Tensorflow symbol which
will calculate an embedding vector for each sample in the batch.
Keep in mind that the scheme is a list of Tensorflow symbols, which are stacked by optional batchnorm,
activation, and dropout in between as specified in InputEmbedderParameters.
"""
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=None, batchnorm: bool=False, dropout_rate: float=0.0,
name: str= "embedder", input_rescaling: float=1.0, input_offset: float=0.0, input_clipping=None,
dense_layer=Dense, is_training=False):
super().__init__(input_size, activation_function, scheme, batchnorm, dropout_rate, name, input_rescaling,
input_offset, input_clipping, dense_layer=dense_layer, is_training=is_training)
self.return_type = InputTensorEmbedding
assert scheme is not None, "Custom scheme (a list of callables) must be specified for TensorEmbedder"
@property
def schemes(self):
return {}

View File

@@ -27,7 +27,7 @@ from rl_coach.architectures.tensorflow_components.architecture import TensorFlow
from rl_coach.architectures.tensorflow_components import utils
from rl_coach.base_parameters import AgentParameters, EmbeddingMergerType
from rl_coach.core_types import PredictionType
from rl_coach.spaces import SpacesDefinition, PlanarMapsObservationSpace
from rl_coach.spaces import SpacesDefinition, PlanarMapsObservationSpace, TensorObservationSpace
from rl_coach.utils import get_all_subclasses, dynamic_import_and_instantiate_module_from_params, indent_string
@@ -116,10 +116,12 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
raise ValueError("The key for the input embedder ({}) must match one of the following keys: {}"
.format(input_name, allowed_inputs.keys()))
mod_names = {'image': 'ImageEmbedder', 'vector': 'VectorEmbedder'}
mod_names = {'image': 'ImageEmbedder', 'vector': 'VectorEmbedder', 'tensor': 'TensorEmbedder'}
emb_type = "vector"
if isinstance(allowed_inputs[input_name], PlanarMapsObservationSpace):
if isinstance(allowed_inputs[input_name], TensorObservationSpace):
emb_type = "tensor"
elif isinstance(allowed_inputs[input_name], PlanarMapsObservationSpace):
emb_type = "image"
embedder_path = 'rl_coach.architectures.tensorflow_components.embedders:' + mod_names[emb_type]