1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00

Adding initial interface for backend and redis pubsub (#19)

* Adding initial interface for backend and redis pubsub

* Addressing comments, adding super in all memories

* Removing distributed experience replay
This commit is contained in:
Ajay Deshpande
2018-10-03 15:07:48 -07:00
committed by zach dwiel
parent a54ef2757f
commit 6b2de6ba6d
21 changed files with 459 additions and 444 deletions

View File

@@ -2,42 +2,17 @@
"""
import argparse
import time
import json
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach import core_types
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.non_episodic.distributed_experience_replay import DistributedExperienceReplay
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.memories.backend.memory_impl import construct_memory_params
# Q: specify alternative distributed memory, or should this go in the preset?
# A: preset must define distributed memory to be used. we aren't going to take a non-distributed preset and automatically distribute it.
def heatup(graph_manager):
memory = DistributedExperienceReplay(max_size=(MemoryGranularity.Transitions, 1000000),
redis_ip=graph_manager.agent_params.memory.redis_ip,
redis_port=graph_manager.agent_params.memory.redis_port)
while(memory.num_transitions() < graph_manager.heatup_steps.num_steps):
time.sleep(1)
class StepsLoop(object):
"""StepsLoop facilitates a simple while loop"""
def __init__(self, steps_counters, phase, steps):
super(StepsLoop, self).__init__()
self.steps_counters = steps_counters
self.phase = phase
self.steps = steps
self.step_end = self._step_count() + steps.num_steps
def _step_count(self):
return self.steps_counters[self.phase][self.steps.__class__]
def continue(self):
return self._step_count() < count_end:
def training_worker(graph_manager, checkpoint_dir):
"""
@@ -51,12 +26,8 @@ def training_worker(graph_manager, checkpoint_dir):
# save randomly initialized graph
graph_manager.save_checkpoint()
# optionally wait for a specific number of transitions to be in memory before training
heatup(graph_manager)
# training loop
stepper = StepsLoop(graph_manager.total_steps_counters, RunPhase.TRAIN, graph_manager.improve_steps)
while stepper.continue():
while True:
graph_manager.phase = core_types.RunPhase.TRAIN
graph_manager.train(core_types.TrainingSteps(1))
graph_manager.phase = core_types.RunPhase.UNDEFINED
@@ -65,7 +36,6 @@ def training_worker(graph_manager, checkpoint_dir):
graph_manager.save_checkpoint()
# TODO: signal to workers that training is done
def main():
parser = argparse.ArgumentParser()
@@ -85,12 +55,18 @@ def main():
help="(int) Port of the redis server",
default=6379,
type=int)
parser.add_argument('--memory_backend_params',
help="(string) JSON string of the memory backend params",
type=str)
args = parser.parse_args()
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
graph_manager.agent_params.memory.redis_ip = args.redis_ip
graph_manager.agent_params.memory.redis_port = args.redis_port
if args.memory_backend_params:
args.memory_backend_params = json.loads(args.memory_backend_params)
if 'run_type' not in args.memory_backend_params:
args.memory_backend_params['run_type'] = 'trainer'
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
training_worker(
graph_manager=graph_manager,