mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
update nec and value optimization agents to work with recurrent middleware
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -64,7 +64,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
trainable=False)
|
||||
self.lock = self.lock_counter.assign_add(1, use_locking=True)
|
||||
self.lock_init = self.lock_counter.assign(0)
|
||||
|
||||
|
||||
self.release_counter = tf.get_variable("release_counter", [], tf.int32,
|
||||
initializer=tf.constant_initializer(0, dtype=tf.int32),
|
||||
trainable=False)
|
||||
@@ -86,6 +86,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
tuning_parameters.clip_gradients)
|
||||
|
||||
# gradients of the outputs w.r.t. the inputs
|
||||
# at the moment, this is only used by ddpg
|
||||
if len(self.outputs) == 1:
|
||||
self.gradients_wrt_inputs = [tf.gradients(self.outputs[0], input_ph) for input_ph in self.inputs]
|
||||
self.gradients_weights_ph = tf.placeholder('float32', self.outputs[0].shape, 'output_gradient_weights')
|
||||
@@ -126,7 +127,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
|
||||
def accumulate_gradients(self, inputs, targets, additional_fetches=None):
|
||||
"""
|
||||
Runs a forward pass & backward pass, clips gradients if needed and accumulates them into the accumulation
|
||||
Runs a forward pass & backward pass, clips gradients if needed and accumulates them into the accumulation
|
||||
placeholders
|
||||
:param additional_fetches: Optional tensors to fetch during gradients calculation
|
||||
:param inputs: The input batch for the network
|
||||
@@ -164,6 +165,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
|
||||
# feed the lstm state if necessary
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
# we can't always assume that we are starting from scratch here can we?
|
||||
feed_dict[self.middleware_embedder.c_in] = self.middleware_embedder.c_init
|
||||
feed_dict[self.middleware_embedder.h_in] = self.middleware_embedder.h_init
|
||||
|
||||
@@ -231,20 +233,27 @@ class TensorFlowArchitecture(Architecture):
|
||||
while self.tp.sess.run(self.release_counter) % self.tp.num_threads != 0:
|
||||
time.sleep(0.00001)
|
||||
|
||||
def predict(self, inputs):
|
||||
def predict(self, inputs, outputs=None):
|
||||
"""
|
||||
Run a forward pass of the network using the given input
|
||||
:param inputs: The input for the network
|
||||
:param outputs: The output for the network, defaults to self.outputs
|
||||
:return: The network output
|
||||
|
||||
WARNING: must only call once per state since each call is assumed by LSTM to be a new time step.
|
||||
"""
|
||||
|
||||
feed_dict = dict(zip(self.inputs, force_list(inputs)))
|
||||
if outputs is None:
|
||||
outputs = self.outputs
|
||||
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
feed_dict[self.middleware_embedder.c_in] = self.curr_rnn_c_in
|
||||
feed_dict[self.middleware_embedder.h_in] = self.curr_rnn_h_in
|
||||
output, (self.curr_rnn_c_in, self.curr_rnn_h_in) = self.tp.sess.run([self.outputs, self.middleware_embedder.state_out], feed_dict=feed_dict)
|
||||
|
||||
output, (self.curr_rnn_c_in, self.curr_rnn_h_in) = self.tp.sess.run([outputs, self.middleware_embedder.state_out], feed_dict=feed_dict)
|
||||
else:
|
||||
output = self.tp.sess.run(self.outputs, feed_dict)
|
||||
output = self.tp.sess.run(outputs, feed_dict)
|
||||
|
||||
return squeeze_list(output)
|
||||
|
||||
@@ -299,7 +308,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
|
||||
def set_variable_value(self, assign_op, value, placeholder=None):
|
||||
"""
|
||||
Updates the value of a variable.
|
||||
Updates the value of a variable.
|
||||
This requires having an assign operation for the variable, and a placeholder which will provide the value
|
||||
:param assign_op: an assign operation for the variable
|
||||
:param value: a value to set the variable to
|
||||
|
||||
Reference in New Issue
Block a user