mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
update nec and value optimization agents to work with recurrent middleware
This commit is contained in:
@@ -204,10 +204,11 @@ class Agent(object):
|
||||
for action in self.env.actions_description:
|
||||
self.episode_running_info[action] = []
|
||||
plt.clf()
|
||||
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
for network in self.networks:
|
||||
network.curr_rnn_c_in = network.middleware_embedder.c_init
|
||||
network.curr_rnn_h_in = network.middleware_embedder.h_init
|
||||
network.online_network.curr_rnn_c_in = network.online_network.middleware_embedder.c_init
|
||||
network.online_network.curr_rnn_h_in = network.online_network.middleware_embedder.h_init
|
||||
|
||||
def preprocess_observation(self, observation):
|
||||
"""
|
||||
|
||||
@@ -14,6 +14,8 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
|
||||
from agents.value_optimization_agent import *
|
||||
|
||||
|
||||
@@ -43,26 +45,34 @@ class NECAgent(ValueOptimizationAgent):
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
# convert to batch so we can run it through the network
|
||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||
"""
|
||||
this method modifies the superclass's behavior in only 3 ways:
|
||||
|
||||
1) the embedding is saved and stored in self.current_episode_state_embeddings
|
||||
2) the dnd output head is only called if it has a minimum number of entries in it
|
||||
ideally, the dnd had would do this on its own, but in my attempt in encoding this
|
||||
behavior in tensorflow, I ran into problems. Would definitely be worth
|
||||
revisiting in the future
|
||||
3) during training, actions are saved and stored in self.current_episode_actions
|
||||
if behaviors 1 and 2 were handled elsewhere, this could easily be implemented
|
||||
as a wrapper around super instead of overriding this method entirelysearch
|
||||
"""
|
||||
|
||||
# get embedding
|
||||
embedding = self.main_network.sess.run(self.main_network.online_network.state_embedding,
|
||||
feed_dict={self.main_network.online_network.inputs[0]: observation})
|
||||
self.current_episode_state_embeddings.append(embedding[0])
|
||||
embedding = self.main_network.online_network.predict(
|
||||
self.tf_input_state(curr_state),
|
||||
outputs=self.main_network.online_network.state_embedding)
|
||||
self.current_episode_state_embeddings.append(embedding)
|
||||
|
||||
# get action values
|
||||
# TODO: support additional heads. Right now all other heads are ignored
|
||||
if self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
|
||||
# if there are enough entries in the DND then we can query it to get the action values
|
||||
actions_q_values = []
|
||||
for action in range(self.action_space_size):
|
||||
# actions_q_values = []
|
||||
feed_dict = {
|
||||
self.main_network.online_network.state_embedding: embedding,
|
||||
self.main_network.online_network.output_heads[0].input[0]: np.array([action])
|
||||
self.main_network.online_network.state_embedding: [embedding],
|
||||
}
|
||||
q_value = self.main_network.sess.run(
|
||||
actions_q_values = self.main_network.sess.run(
|
||||
self.main_network.online_network.output_heads[0].output, feed_dict=feed_dict)
|
||||
actions_q_values.append(q_value[0])
|
||||
else:
|
||||
# get only the embedding so we can insert it to the DND
|
||||
actions_q_values = [0] * self.action_space_size
|
||||
@@ -70,6 +80,8 @@ class NECAgent(ValueOptimizationAgent):
|
||||
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
|
||||
if phase == RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(actions_q_values)
|
||||
# NOTE: this next line is not in the parent implementation
|
||||
# NOTE: it could be implemented as a wrapper around the parent since action is returned
|
||||
self.current_episode_actions.append(action)
|
||||
else:
|
||||
action = np.argmax(actions_q_values)
|
||||
|
||||
@@ -14,6 +14,8 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
|
||||
from agents.agent import *
|
||||
|
||||
|
||||
@@ -30,15 +32,28 @@ class ValueOptimizationAgent(Agent):
|
||||
def get_q_values(self, prediction):
|
||||
return prediction
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
def tf_input_state(self, curr_state):
|
||||
"""
|
||||
convert curr_state into input tensors tensorflow is expecting.
|
||||
|
||||
TODO: move this function into Agent and use in as many agent implementations as possible
|
||||
currently, other agents will likely not work with environment measurements.
|
||||
This will become even more important as we support more complex and varied environment states.
|
||||
"""
|
||||
# convert to batch so we can run it through the network
|
||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||
if self.tp.agent.use_measurements:
|
||||
measurements = np.expand_dims(np.array(curr_state['measurements']), 0)
|
||||
prediction = self.main_network.online_network.predict([observation, measurements])
|
||||
tf_input_state = [observation, measurements]
|
||||
else:
|
||||
prediction = self.main_network.online_network.predict(observation)
|
||||
tf_input_state = observation
|
||||
return tf_input_state
|
||||
|
||||
def get_prediction(self, curr_state):
|
||||
return self.main_network.online_network.predict(self.tf_input_state(curr_state))
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
prediction = self.get_prediction(curr_state)
|
||||
actions_q_values = self.get_q_values(prediction)
|
||||
|
||||
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
|
||||
|
||||
@@ -30,9 +30,12 @@ except ImportError:
|
||||
|
||||
|
||||
class NetworkWrapper(object):
|
||||
"""
|
||||
Contains multiple networks and managers syncing and gradient updates
|
||||
between them.
|
||||
"""
|
||||
def __init__(self, tuning_parameters, has_target, has_global, name, replicated_device=None, worker_device=None):
|
||||
"""
|
||||
|
||||
:param tuning_parameters:
|
||||
:type tuning_parameters: Preset
|
||||
:param has_target:
|
||||
|
||||
@@ -86,6 +86,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
tuning_parameters.clip_gradients)
|
||||
|
||||
# gradients of the outputs w.r.t. the inputs
|
||||
# at the moment, this is only used by ddpg
|
||||
if len(self.outputs) == 1:
|
||||
self.gradients_wrt_inputs = [tf.gradients(self.outputs[0], input_ph) for input_ph in self.inputs]
|
||||
self.gradients_weights_ph = tf.placeholder('float32', self.outputs[0].shape, 'output_gradient_weights')
|
||||
@@ -164,6 +165,7 @@ class TensorFlowArchitecture(Architecture):
|
||||
|
||||
# feed the lstm state if necessary
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
# we can't always assume that we are starting from scratch here can we?
|
||||
feed_dict[self.middleware_embedder.c_in] = self.middleware_embedder.c_init
|
||||
feed_dict[self.middleware_embedder.h_in] = self.middleware_embedder.h_init
|
||||
|
||||
@@ -231,20 +233,27 @@ class TensorFlowArchitecture(Architecture):
|
||||
while self.tp.sess.run(self.release_counter) % self.tp.num_threads != 0:
|
||||
time.sleep(0.00001)
|
||||
|
||||
def predict(self, inputs):
|
||||
def predict(self, inputs, outputs=None):
|
||||
"""
|
||||
Run a forward pass of the network using the given input
|
||||
:param inputs: The input for the network
|
||||
:param outputs: The output for the network, defaults to self.outputs
|
||||
:return: The network output
|
||||
|
||||
WARNING: must only call once per state since each call is assumed by LSTM to be a new time step.
|
||||
"""
|
||||
|
||||
feed_dict = dict(zip(self.inputs, force_list(inputs)))
|
||||
if outputs is None:
|
||||
outputs = self.outputs
|
||||
|
||||
if self.tp.agent.middleware_type == MiddlewareTypes.LSTM:
|
||||
feed_dict[self.middleware_embedder.c_in] = self.curr_rnn_c_in
|
||||
feed_dict[self.middleware_embedder.h_in] = self.curr_rnn_h_in
|
||||
output, (self.curr_rnn_c_in, self.curr_rnn_h_in) = self.tp.sess.run([self.outputs, self.middleware_embedder.state_out], feed_dict=feed_dict)
|
||||
|
||||
output, (self.curr_rnn_c_in, self.curr_rnn_h_in) = self.tp.sess.run([outputs, self.middleware_embedder.state_out], feed_dict=feed_dict)
|
||||
else:
|
||||
output = self.tp.sess.run(self.outputs, feed_dict)
|
||||
output = self.tp.sess.run(outputs, feed_dict)
|
||||
|
||||
return squeeze_list(output)
|
||||
|
||||
|
||||
@@ -22,6 +22,9 @@ from configurations import InputTypes, OutputTypes, MiddlewareTypes
|
||||
|
||||
|
||||
class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
"""
|
||||
A generalized version of all possible networks implemented using tensorflow.
|
||||
"""
|
||||
def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True):
|
||||
self.global_network = global_network
|
||||
self.network_is_local = network_is_local
|
||||
|
||||
@@ -67,6 +67,10 @@ class Head(object):
|
||||
def _build_module(self, input_layer):
|
||||
"""
|
||||
Builds the graph of the module
|
||||
|
||||
This method is called early on from __call__. It is expected to store the graph
|
||||
in self.output.
|
||||
|
||||
:param input_layer: the input to the graph
|
||||
:return: None
|
||||
"""
|
||||
@@ -279,20 +283,26 @@ class DNDQHead(Head):
|
||||
key_error_threshold=self.DND_key_error_threshold)
|
||||
|
||||
# Retrieve info from DND dictionary
|
||||
self.action = tf.placeholder(tf.int8, [None], name="action")
|
||||
self.input = self.action
|
||||
# self.action = tf.placeholder(tf.int8, [None], name="action")
|
||||
# self.input = self.action
|
||||
self.output = [
|
||||
self._q_value(input_layer, action)
|
||||
for action in range(self.num_actions)
|
||||
]
|
||||
|
||||
def _q_value(self, input_layer, action):
|
||||
result = tf.py_func(self.DND.query,
|
||||
[input_layer, self.action, self.number_of_nn],
|
||||
[input_layer, [action], self.number_of_nn],
|
||||
[tf.float64, tf.float64])
|
||||
self.dnd_embeddings = tf.to_float(result[0])
|
||||
self.dnd_values = tf.to_float(result[1])
|
||||
dnd_embeddings = tf.to_float(result[0])
|
||||
dnd_values = tf.to_float(result[1])
|
||||
|
||||
# DND calculation
|
||||
square_diff = tf.square(self.dnd_embeddings - tf.expand_dims(input_layer, 1))
|
||||
square_diff = tf.square(dnd_embeddings - tf.expand_dims(input_layer, 1))
|
||||
distances = tf.reduce_sum(square_diff, axis=2) + [self.l2_norm_added_delta]
|
||||
weights = 1.0 / distances
|
||||
normalised_weights = weights / tf.reduce_sum(weights, axis=1, keep_dims=True)
|
||||
self.output = tf.reduce_sum(self.dnd_values * normalised_weights, axis=1)
|
||||
return tf.reduce_sum(dnd_values * normalised_weights, axis=1)
|
||||
|
||||
|
||||
class NAFHead(Head):
|
||||
|
||||
@@ -43,8 +43,8 @@ GET_PREFERENCES_MANUALLY=1
|
||||
INSTALL_COACH=0
|
||||
INSTALL_DASHBOARD=0
|
||||
INSTALL_GYM=0
|
||||
INSTALL_VIRTUAL_ENVIRONMENT=1
|
||||
INSTALL_NEON=0
|
||||
INSTALL_VIRTUAL_ENVIRONMENT=1
|
||||
|
||||
# Get user preferences
|
||||
TEMP=`getopt -o cpgvrmeNndh \
|
||||
@@ -202,4 +202,3 @@ else
|
||||
# GPU supported TensorFlow
|
||||
pip3 install tensorflow-gpu
|
||||
fi
|
||||
|
||||
|
||||
13
presets.py
13
presets.py
@@ -907,6 +907,19 @@ class Doom_Health_DQN(Preset):
|
||||
self.agent.num_steps_between_copying_online_weights_to_target = 1000
|
||||
|
||||
|
||||
class Pong_NEC_LSTM(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, NEC, Atari, ExplorationParameters)
|
||||
self.env.level = 'PongDeterministic-v4'
|
||||
self.learning_rate = 0.001
|
||||
self.agent.num_transitions_in_experience_replay = 1000000
|
||||
self.agent.middleware_type = MiddlewareTypes.LSTM
|
||||
self.exploration.initial_epsilon = 0.5
|
||||
self.exploration.final_epsilon = 0.1
|
||||
self.exploration.epsilon_decay_steps = 1000000
|
||||
self.num_heatup_steps = 500
|
||||
|
||||
|
||||
class Pong_NEC(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, NEC, Atari, ExplorationParameters)
|
||||
|
||||
33
utils.py
33
utils.py
@@ -180,6 +180,10 @@ def threaded_cmd_line_run(run_cmd, id=-1):
|
||||
|
||||
|
||||
class Signal(object):
|
||||
"""
|
||||
Stores a stream of values and provides methods like get_mean and get_max
|
||||
which returns the statistics about accumulated values.
|
||||
"""
|
||||
def __init__(self, name):
|
||||
self.name = name
|
||||
self.sample_count = 0
|
||||
@@ -190,39 +194,36 @@ class Signal(object):
|
||||
self.values = []
|
||||
|
||||
def add_sample(self, sample):
|
||||
"""
|
||||
:param sample: either a single value or an array of values
|
||||
"""
|
||||
self.values.append(sample)
|
||||
|
||||
def _get_values(self):
|
||||
if type(self.values[0]) == np.ndarray:
|
||||
return np.concatenate(self.values)
|
||||
else:
|
||||
return self.values
|
||||
|
||||
def get_mean(self):
|
||||
if len(self.values) == 0:
|
||||
return ''
|
||||
if type(self.values[0]) == np.ndarray:
|
||||
return np.mean(np.concatenate(self.values))
|
||||
else:
|
||||
return np.mean(self.values)
|
||||
return np.mean(self._get_values())
|
||||
|
||||
def get_max(self):
|
||||
if len(self.values) == 0:
|
||||
return ''
|
||||
if type(self.values[0]) == np.ndarray:
|
||||
return np.max(np.concatenate(self.values))
|
||||
else:
|
||||
return np.max(self.values)
|
||||
return np.max(self._get_values())
|
||||
|
||||
def get_min(self):
|
||||
if len(self.values) == 0:
|
||||
return ''
|
||||
if type(self.values[0]) == np.ndarray:
|
||||
return np.min(np.concatenate(self.values))
|
||||
else:
|
||||
return np.min(self.values)
|
||||
return np.min(self._get_values())
|
||||
|
||||
def get_stdev(self):
|
||||
if len(self.values) == 0:
|
||||
return ''
|
||||
if type(self.values[0]) == np.ndarray:
|
||||
return np.std(np.concatenate(self.values))
|
||||
else:
|
||||
return np.std(self.values)
|
||||
return np.std(self._get_values())
|
||||
|
||||
|
||||
def force_list(var):
|
||||
|
||||
Reference in New Issue
Block a user