mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
update of api docstrings across coach and tutorials [WIP] (#91)
* updating the documentation website * adding the built docs * update of api docstrings across coach and tutorials 0-2 * added some missing api documentation * New Sphinx based documentation
This commit is contained in:
331
docs/components/agents/policy_optimization/ac.html
Normal file
331
docs/components/agents/policy_optimization/ac.html
Normal file
@@ -0,0 +1,331 @@
|
||||
|
||||
|
||||
<!DOCTYPE html>
|
||||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Actor-Critic — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
<link rel="index" title="Index" href="../../../genindex.html" />
|
||||
<link rel="search" title="Search" href="../../../search.html" />
|
||||
<link rel="next" title="Behavioral Cloning" href="../imitation/bc.html" />
|
||||
<link rel="prev" title="Agents" href="../index.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
|
||||
|
||||
|
||||
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
|
||||
|
||||
|
||||
|
||||
|
||||
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
|
||||
|
||||
</a>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="search">
|
||||
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
|
||||
<input type="text" name="q" placeholder="Search docs" />
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<p class="caption"><span class="caption-text">Intro</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Design</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Contributing</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Components</span></p>
|
||||
<ul class="current">
|
||||
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
|
||||
<li class="toctree-l2 current"><a class="current reference internal" href="#">Actor-Critic</a><ul>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#algorithm-description">Algorithm Description</a><ul>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#choosing-an-action-discrete-actions">Choosing an action - Discrete actions</a></li>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#training-the-network">Training the network</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/bs_dqn.html">Bootstrapped DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/categorical_dqn.html">Categorical DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dqn.html">Deep Q Networks</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dueling_dqn.html">Dueling DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/mmc.html">Mixed Monte Carlo</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/n_step.html">N-Step Q Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/naf.html">Normalized Advantage Functions</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/nec.html">Neural Episodic Control</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/pal.html">Persistent Advantage Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="pg.html">Policy Gradient</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="ppo.html">Proximal Policy Optimization</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/rainbow.html">Rainbow</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/qr_dqn.html">Quantile Regression DQN</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../architectures/index.html">Architectures</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../environments/index.html">Environments</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../exploration_policies/index.html">Exploration Policies</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../filters/index.html">Filters</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../memories/index.html">Memories</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../core_types.html">Core Types</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../spaces.html">Spaces</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../additional_parameters.html">Additional Parameters</a></li>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||||
|
||||
|
||||
<nav class="wy-nav-top" aria-label="top navigation">
|
||||
|
||||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||||
<a href="../../../index.html">Reinforcement Learning Coach</a>
|
||||
|
||||
</nav>
|
||||
|
||||
|
||||
<div class="wy-nav-content">
|
||||
|
||||
<div class="rst-content">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||||
|
||||
<ul class="wy-breadcrumbs">
|
||||
|
||||
<li><a href="../../../index.html">Docs</a> »</li>
|
||||
|
||||
<li><a href="../index.html">Agents</a> »</li>
|
||||
|
||||
<li>Actor-Critic</li>
|
||||
|
||||
|
||||
<li class="wy-breadcrumbs-aside">
|
||||
|
||||
|
||||
<a href="../../../_sources/components/agents/policy_optimization/ac.rst.txt" rel="nofollow"> View page source</a>
|
||||
|
||||
|
||||
</li>
|
||||
|
||||
</ul>
|
||||
|
||||
|
||||
<hr/>
|
||||
</div>
|
||||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||||
<div itemprop="articleBody">
|
||||
|
||||
<div class="section" id="actor-critic">
|
||||
<h1>Actor-Critic<a class="headerlink" href="#actor-critic" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>Actions space:</strong> Discrete | Continuous</p>
|
||||
<p><strong>References:</strong> <a class="reference external" href="https://arxiv.org/abs/1602.01783">Asynchronous Methods for Deep Reinforcement Learning</a></p>
|
||||
<div class="section" id="network-structure">
|
||||
<h2>Network Structure<a class="headerlink" href="#network-structure" title="Permalink to this headline">¶</a></h2>
|
||||
<a class="reference internal image-reference" href="../../../_images/ac.png"><img alt="../../../_images/ac.png" class="align-center" src="../../../_images/ac.png" style="width: 500px;" /></a>
|
||||
</div>
|
||||
<div class="section" id="algorithm-description">
|
||||
<h2>Algorithm Description<a class="headerlink" href="#algorithm-description" title="Permalink to this headline">¶</a></h2>
|
||||
<div class="section" id="choosing-an-action-discrete-actions">
|
||||
<h3>Choosing an action - Discrete actions<a class="headerlink" href="#choosing-an-action-discrete-actions" title="Permalink to this headline">¶</a></h3>
|
||||
<p>The policy network is used in order to predict action probabilites. While training, a sample is taken from a categorical
|
||||
distribution assigned with these probabilities. When testing, the action with the highest probability is used.</p>
|
||||
</div>
|
||||
<div class="section" id="training-the-network">
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
<p>A batch of <span class="math notranslate nohighlight">\(T_{max}\)</span> transitions is used, and the advantages are calculated upon it.</p>
|
||||
<p>Advantages can be calculated by either of the following methods (configured by the selected preset) -</p>
|
||||
<ol class="arabic simple">
|
||||
<li><strong>A_VALUE</strong> - Estimating advantage directly:
|
||||
<span class="math notranslate nohighlight">\(A(s_t, a_t) = \underbrace{\sum_{i=t}^{i=t + k - 1} \gamma^{i-t}r_i +\gamma^{k} V(s_{t+k})}_{Q(s_t, a_t)} - V(s_t)\)</span>
|
||||
where <span class="math notranslate nohighlight">\(k\)</span> is <span class="math notranslate nohighlight">\(T_{max} - State\_Index\)</span> for each state in the batch.</li>
|
||||
<li><strong>GAE</strong> - By following the <a class="reference external" href="https://arxiv.org/abs/1506.02438">Generalized Advantage Estimation</a> paper.</li>
|
||||
</ol>
|
||||
<p>The advantages are then used in order to accumulate gradients according to
|
||||
<span class="math notranslate nohighlight">\(L = -\mathop{\mathbb{E}} [log (\pi) \cdot A]\)</span></p>
|
||||
<dl class="class">
|
||||
<dt id="rl_coach.agents.actor_critic_agent.ActorCriticAlgorithmParameters">
|
||||
<em class="property">class </em><code class="descclassname">rl_coach.agents.actor_critic_agent.</code><code class="descname">ActorCriticAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/actor_critic_agent.html#ActorCriticAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.actor_critic_agent.ActorCriticAlgorithmParameters" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||
<li><strong>policy_gradient_rescaler</strong> – (PolicyGradientRescaler)
|
||||
The value that will be used to rescale the policy gradient</li>
|
||||
<li><strong>apply_gradients_every_x_episodes</strong> – (int)
|
||||
The number of episodes to wait before applying the accumulated gradients to the network.
|
||||
The training iterations only accumulate gradients without actually applying them.</li>
|
||||
<li><strong>beta_entropy</strong> – (float)
|
||||
The weight that will be given to the entropy regularization which is used in order to improve exploration.</li>
|
||||
<li><strong>num_steps_between_gradient_updates</strong> – (int)
|
||||
Every num_steps_between_gradient_updates transitions will be considered as a single batch and use for
|
||||
accumulating gradients. This is also the number of steps used for bootstrapping according to the n-step formulation.</li>
|
||||
<li><strong>gae_lambda</strong> – (float)
|
||||
If the policy gradient rescaler was defined as PolicyGradientRescaler.GAE, the generalized advantage estimation
|
||||
scheme will be used, in which case the lambda value controls the decay for the different n-step lengths.</li>
|
||||
<li><strong>estimate_state_value_using_gae</strong> – (bool)
|
||||
If set to True, the state value targets for the V head will be estimated using the GAE scheme.</li>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<footer>
|
||||
|
||||
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
|
||||
|
||||
<a href="../imitation/bc.html" class="btn btn-neutral float-right" title="Behavioral Cloning" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="../index.html" class="btn btn-neutral" title="Agents" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<hr/>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||||
|
||||
</footer>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</section>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
354
docs/components/agents/policy_optimization/cppo.html
Normal file
354
docs/components/agents/policy_optimization/cppo.html
Normal file
@@ -0,0 +1,354 @@
|
||||
|
||||
|
||||
<!DOCTYPE html>
|
||||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Clipped Proximal Policy Optimization — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
<link rel="index" title="Index" href="../../../genindex.html" />
|
||||
<link rel="search" title="Search" href="../../../search.html" />
|
||||
<link rel="next" title="Deep Deterministic Policy Gradient" href="ddpg.html" />
|
||||
<link rel="prev" title="Conditional Imitation Learning" href="../imitation/cil.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
|
||||
|
||||
|
||||
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
|
||||
|
||||
|
||||
|
||||
|
||||
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
|
||||
|
||||
</a>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="search">
|
||||
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
|
||||
<input type="text" name="q" placeholder="Search docs" />
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<p class="caption"><span class="caption-text">Intro</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Design</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Contributing</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Components</span></p>
|
||||
<ul class="current">
|
||||
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
|
||||
<li class="toctree-l2"><a class="reference internal" href="ac.html">Actor-Critic</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/bs_dqn.html">Bootstrapped DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/categorical_dqn.html">Categorical DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
|
||||
<li class="toctree-l2 current"><a class="current reference internal" href="#">Clipped Proximal Policy Optimization</a><ul>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#algorithm-description">Algorithm Description</a><ul>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#choosing-an-action-continuous-action">Choosing an action - Continuous action</a></li>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#training-the-network">Training the network</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dqn.html">Deep Q Networks</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dueling_dqn.html">Dueling DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/mmc.html">Mixed Monte Carlo</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/n_step.html">N-Step Q Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/naf.html">Normalized Advantage Functions</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/nec.html">Neural Episodic Control</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/pal.html">Persistent Advantage Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="pg.html">Policy Gradient</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="ppo.html">Proximal Policy Optimization</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/rainbow.html">Rainbow</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/qr_dqn.html">Quantile Regression DQN</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../architectures/index.html">Architectures</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../environments/index.html">Environments</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../exploration_policies/index.html">Exploration Policies</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../filters/index.html">Filters</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../memories/index.html">Memories</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../core_types.html">Core Types</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../spaces.html">Spaces</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../additional_parameters.html">Additional Parameters</a></li>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||||
|
||||
|
||||
<nav class="wy-nav-top" aria-label="top navigation">
|
||||
|
||||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||||
<a href="../../../index.html">Reinforcement Learning Coach</a>
|
||||
|
||||
</nav>
|
||||
|
||||
|
||||
<div class="wy-nav-content">
|
||||
|
||||
<div class="rst-content">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||||
|
||||
<ul class="wy-breadcrumbs">
|
||||
|
||||
<li><a href="../../../index.html">Docs</a> »</li>
|
||||
|
||||
<li><a href="../index.html">Agents</a> »</li>
|
||||
|
||||
<li>Clipped Proximal Policy Optimization</li>
|
||||
|
||||
|
||||
<li class="wy-breadcrumbs-aside">
|
||||
|
||||
|
||||
<a href="../../../_sources/components/agents/policy_optimization/cppo.rst.txt" rel="nofollow"> View page source</a>
|
||||
|
||||
|
||||
</li>
|
||||
|
||||
</ul>
|
||||
|
||||
|
||||
<hr/>
|
||||
</div>
|
||||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||||
<div itemprop="articleBody">
|
||||
|
||||
<div class="section" id="clipped-proximal-policy-optimization">
|
||||
<h1>Clipped Proximal Policy Optimization<a class="headerlink" href="#clipped-proximal-policy-optimization" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>Actions space:</strong> Discrete | Continuous</p>
|
||||
<p><strong>References:</strong> <a class="reference external" href="https://arxiv.org/pdf/1707.06347.pdf">Proximal Policy Optimization Algorithms</a></p>
|
||||
<div class="section" id="network-structure">
|
||||
<h2>Network Structure<a class="headerlink" href="#network-structure" title="Permalink to this headline">¶</a></h2>
|
||||
<img alt="../../../_images/ppo.png" class="align-center" src="../../../_images/ppo.png" />
|
||||
</div>
|
||||
<div class="section" id="algorithm-description">
|
||||
<h2>Algorithm Description<a class="headerlink" href="#algorithm-description" title="Permalink to this headline">¶</a></h2>
|
||||
<div class="section" id="choosing-an-action-continuous-action">
|
||||
<h3>Choosing an action - Continuous action<a class="headerlink" href="#choosing-an-action-continuous-action" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Same as in PPO.</p>
|
||||
</div>
|
||||
<div class="section" id="training-the-network">
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Very similar to PPO, with several small (but very simplifying) changes:</p>
|
||||
<ol class="arabic">
|
||||
<li><p class="first">Train both the value and policy networks, simultaneously, by defining a single loss function,
|
||||
which is the sum of each of the networks loss functions. Then, back propagate gradients only once from this unified loss function.</p>
|
||||
</li>
|
||||
<li><p class="first">The unified network’s optimizer is set to Adam (instead of L-BFGS for the value network as in PPO).</p>
|
||||
</li>
|
||||
<li><p class="first">Value targets are now also calculated based on the GAE advantages.
|
||||
In this method, the <span class="math notranslate nohighlight">\(V\)</span> values are predicted from the critic network, and then added to the GAE based advantages,
|
||||
in order to get a <span class="math notranslate nohighlight">\(Q\)</span> value for each action. Now, since our critic network is predicting a <span class="math notranslate nohighlight">\(V\)</span> value for
|
||||
each state, setting the <span class="math notranslate nohighlight">\(Q\)</span> calculated action-values as a target, will on average serve as a <span class="math notranslate nohighlight">\(V\)</span> state-value target.</p>
|
||||
</li>
|
||||
<li><p class="first">Instead of adapting the penalizing KL divergence coefficient used in PPO, the likelihood ratio
|
||||
<span class="math notranslate nohighlight">\(r_t(\theta) =\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)}\)</span> is clipped, to achieve a similar effect.
|
||||
This is done by defining the policy’s loss function to be the minimum between the standard surrogate loss and an epsilon
|
||||
clipped surrogate loss:</p>
|
||||
<p><span class="math notranslate nohighlight">\(L^{CLIP}(\theta)=E_{t}[min(r_t(\theta)\cdot \hat{A}_t, clip(r_t(\theta), 1-\epsilon, 1+\epsilon) \cdot \hat{A}_t)]\)</span></p>
|
||||
</li>
|
||||
</ol>
|
||||
<dl class="class">
|
||||
<dt id="rl_coach.agents.clipped_ppo_agent.ClippedPPOAlgorithmParameters">
|
||||
<em class="property">class </em><code class="descclassname">rl_coach.agents.clipped_ppo_agent.</code><code class="descname">ClippedPPOAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/clipped_ppo_agent.html#ClippedPPOAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.clipped_ppo_agent.ClippedPPOAlgorithmParameters" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||
<li><strong>policy_gradient_rescaler</strong> – (PolicyGradientRescaler)
|
||||
This represents how the critic will be used to update the actor. The critic value function is typically used
|
||||
to rescale the gradients calculated by the actor. There are several ways for doing this, such as using the
|
||||
advantage of the action, or the generalized advantage estimation (GAE) value.</li>
|
||||
<li><strong>gae_lambda</strong> – (float)
|
||||
The <span class="math notranslate nohighlight">\(\lambda\)</span> value is used within the GAE function in order to weight different bootstrap length
|
||||
estimations. Typical values are in the range 0.9-1, and define an exponential decay over the different
|
||||
n-step estimations.</li>
|
||||
<li><strong>clip_likelihood_ratio_using_epsilon</strong> – (float)
|
||||
If not None, the likelihood ratio between the current and new policy in the PPO loss function will be
|
||||
clipped to the range [1-clip_likelihood_ratio_using_epsilon, 1+clip_likelihood_ratio_using_epsilon].
|
||||
This is typically used in the Clipped PPO version of PPO, and should be set to None in regular PPO
|
||||
implementations.</li>
|
||||
<li><strong>value_targets_mix_fraction</strong> – (float)
|
||||
The targets for the value network are an exponential weighted moving average which uses this mix fraction to
|
||||
define how much of the new targets will be taken into account when calculating the loss.
|
||||
This value should be set to the range (0,1], where 1 means that only the new targets will be taken into account.</li>
|
||||
<li><strong>estimate_state_value_using_gae</strong> – (bool)
|
||||
If set to True, the state value will be estimated using the GAE technique.</li>
|
||||
<li><strong>use_kl_regularization</strong> – (bool)
|
||||
If set to True, the loss function will be regularized using the KL diveregence between the current and new
|
||||
policy, to bound the change of the policy during the network update.</li>
|
||||
<li><strong>beta_entropy</strong> – (float)
|
||||
An entropy regulaization term can be added to the loss function in order to control exploration. This term
|
||||
is weighted using the <span class="math notranslate nohighlight">\(eta\)</span> value defined by beta_entropy.</li>
|
||||
<li><strong>optimization_epochs</strong> – (int)
|
||||
For each training phase, the collected dataset will be used for multiple epochs, which are defined by the
|
||||
optimization_epochs value.</li>
|
||||
<li><strong>optimization_epochs</strong> – (Schedule)
|
||||
Can be used to define a schedule over the clipping of the likelihood ratio.</li>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<footer>
|
||||
|
||||
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
|
||||
|
||||
<a href="ddpg.html" class="btn btn-neutral float-right" title="Deep Deterministic Policy Gradient" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="../imitation/cil.html" class="btn btn-neutral" title="Conditional Imitation Learning" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<hr/>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||||
|
||||
</footer>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</section>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
345
docs/components/agents/policy_optimization/ddpg.html
Normal file
345
docs/components/agents/policy_optimization/ddpg.html
Normal file
@@ -0,0 +1,345 @@
|
||||
|
||||
|
||||
<!DOCTYPE html>
|
||||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Deep Deterministic Policy Gradient — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
<link rel="index" title="Index" href="../../../genindex.html" />
|
||||
<link rel="search" title="Search" href="../../../search.html" />
|
||||
<link rel="next" title="Direct Future Prediction" href="../other/dfp.html" />
|
||||
<link rel="prev" title="Clipped Proximal Policy Optimization" href="cppo.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
|
||||
|
||||
|
||||
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
|
||||
|
||||
|
||||
|
||||
|
||||
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
|
||||
|
||||
</a>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="search">
|
||||
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
|
||||
<input type="text" name="q" placeholder="Search docs" />
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<p class="caption"><span class="caption-text">Intro</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Design</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Contributing</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Components</span></p>
|
||||
<ul class="current">
|
||||
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
|
||||
<li class="toctree-l2"><a class="reference internal" href="ac.html">Actor-Critic</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/bs_dqn.html">Bootstrapped DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/categorical_dqn.html">Categorical DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
|
||||
<li class="toctree-l2 current"><a class="current reference internal" href="#">Deep Deterministic Policy Gradient</a><ul>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#algorithm-description">Algorithm Description</a><ul>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#choosing-an-action">Choosing an action</a></li>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#training-the-network">Training the network</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dqn.html">Deep Q Networks</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dueling_dqn.html">Dueling DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/mmc.html">Mixed Monte Carlo</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/n_step.html">N-Step Q Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/naf.html">Normalized Advantage Functions</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/nec.html">Neural Episodic Control</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/pal.html">Persistent Advantage Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="pg.html">Policy Gradient</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="ppo.html">Proximal Policy Optimization</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/rainbow.html">Rainbow</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/qr_dqn.html">Quantile Regression DQN</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../architectures/index.html">Architectures</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../environments/index.html">Environments</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../exploration_policies/index.html">Exploration Policies</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../filters/index.html">Filters</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../memories/index.html">Memories</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../core_types.html">Core Types</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../spaces.html">Spaces</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../additional_parameters.html">Additional Parameters</a></li>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||||
|
||||
|
||||
<nav class="wy-nav-top" aria-label="top navigation">
|
||||
|
||||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||||
<a href="../../../index.html">Reinforcement Learning Coach</a>
|
||||
|
||||
</nav>
|
||||
|
||||
|
||||
<div class="wy-nav-content">
|
||||
|
||||
<div class="rst-content">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||||
|
||||
<ul class="wy-breadcrumbs">
|
||||
|
||||
<li><a href="../../../index.html">Docs</a> »</li>
|
||||
|
||||
<li><a href="../index.html">Agents</a> »</li>
|
||||
|
||||
<li>Deep Deterministic Policy Gradient</li>
|
||||
|
||||
|
||||
<li class="wy-breadcrumbs-aside">
|
||||
|
||||
|
||||
<a href="../../../_sources/components/agents/policy_optimization/ddpg.rst.txt" rel="nofollow"> View page source</a>
|
||||
|
||||
|
||||
</li>
|
||||
|
||||
</ul>
|
||||
|
||||
|
||||
<hr/>
|
||||
</div>
|
||||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||||
<div itemprop="articleBody">
|
||||
|
||||
<div class="section" id="deep-deterministic-policy-gradient">
|
||||
<h1>Deep Deterministic Policy Gradient<a class="headerlink" href="#deep-deterministic-policy-gradient" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>Actions space:</strong> Continuous</p>
|
||||
<p><strong>References:</strong> <a class="reference external" href="https://arxiv.org/abs/1509.02971">Continuous control with deep reinforcement learning</a></p>
|
||||
<div class="section" id="network-structure">
|
||||
<h2>Network Structure<a class="headerlink" href="#network-structure" title="Permalink to this headline">¶</a></h2>
|
||||
<img alt="../../../_images/ddpg.png" class="align-center" src="../../../_images/ddpg.png" />
|
||||
</div>
|
||||
<div class="section" id="algorithm-description">
|
||||
<h2>Algorithm Description<a class="headerlink" href="#algorithm-description" title="Permalink to this headline">¶</a></h2>
|
||||
<div class="section" id="choosing-an-action">
|
||||
<h3>Choosing an action<a class="headerlink" href="#choosing-an-action" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Pass the current states through the actor network, and get an action mean vector <span class="math notranslate nohighlight">\(\mu\)</span>.
|
||||
While in training phase, use a continuous exploration policy, such as the Ornstein-Uhlenbeck process,
|
||||
to add exploration noise to the action. When testing, use the mean vector <span class="math notranslate nohighlight">\(\mu\)</span> as-is.</p>
|
||||
</div>
|
||||
<div class="section" id="training-the-network">
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Start by sampling a batch of transitions from the experience replay.</p>
|
||||
<ul>
|
||||
<li><p class="first">To train the <strong>critic network</strong>, use the following targets:</p>
|
||||
<p><span class="math notranslate nohighlight">\(y_t=r(s_t,a_t )+\gamma \cdot Q(s_{t+1},\mu(s_{t+1} ))\)</span></p>
|
||||
<p>First run the actor target network, using the next states as the inputs, and get <span class="math notranslate nohighlight">\(\mu (s_{t+1} )\)</span>.
|
||||
Next, run the critic target network using the next states and <span class="math notranslate nohighlight">\(\mu (s_{t+1} )\)</span>, and use the output to
|
||||
calculate <span class="math notranslate nohighlight">\(y_t\)</span> according to the equation above. To train the network, use the current states and actions
|
||||
as the inputs, and <span class="math notranslate nohighlight">\(y_t\)</span> as the targets.</p>
|
||||
</li>
|
||||
<li><p class="first">To train the <strong>actor network</strong>, use the following equation:</p>
|
||||
<p><span class="math notranslate nohighlight">\(\nabla_{\theta^\mu } J \approx E_{s_t \tilde{} \rho^\beta } [\nabla_a Q(s,a)|_{s=s_t,a=\mu (s_t ) } \cdot \nabla_{\theta^\mu} \mu(s)|_{s=s_t} ]\)</span></p>
|
||||
<p>Use the actor’s online network to get the action mean values using the current states as the inputs.
|
||||
Then, use the critic online network in order to get the gradients of the critic output with respect to the
|
||||
action mean values <span class="math notranslate nohighlight">\(\nabla _a Q(s,a)|_{s=s_t,a=\mu(s_t ) }\)</span>.
|
||||
Using the chain rule, calculate the gradients of the actor’s output, with respect to the actor weights,
|
||||
given <span class="math notranslate nohighlight">\(\nabla_a Q(s,a)\)</span>. Finally, apply those gradients to the actor network.</p>
|
||||
</li>
|
||||
</ul>
|
||||
<p>After every training step, do a soft update of the critic and actor target networks’ weights from the online networks.</p>
|
||||
<dl class="class">
|
||||
<dt id="rl_coach.agents.ddpg_agent.DDPGAlgorithmParameters">
|
||||
<em class="property">class </em><code class="descclassname">rl_coach.agents.ddpg_agent.</code><code class="descname">DDPGAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/ddpg_agent.html#DDPGAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.ddpg_agent.DDPGAlgorithmParameters" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||
<li><strong>num_steps_between_copying_online_weights_to_target</strong> – (StepMethod)
|
||||
The number of steps between copying the online network weights to the target network weights.</li>
|
||||
<li><strong>rate_for_copying_weights_to_target</strong> – (float)
|
||||
When copying the online network weights to the target network weights, a soft update will be used, which
|
||||
weight the new online network weights by rate_for_copying_weights_to_target</li>
|
||||
<li><strong>num_consecutive_playing_steps</strong> – (StepMethod)
|
||||
The number of consecutive steps to act between every two training iterations</li>
|
||||
<li><strong>use_target_network_for_evaluation</strong> – (bool)
|
||||
If set to True, the target network will be used for predicting the actions when choosing actions to act.
|
||||
Since the target network weights change more slowly, the predicted actions will be more consistent.</li>
|
||||
<li><strong>action_penalty</strong> – (float)
|
||||
The amount by which to penalize the network on high action feature (pre-activation) values.
|
||||
This can prevent the actions features from saturating the TanH activation function, and therefore prevent the
|
||||
gradients from becoming very low.</li>
|
||||
<li><strong>clip_critic_targets</strong> – (Tuple[float, float] or None)
|
||||
The range to clip the critic target to in order to prevent overestimation of the action values.</li>
|
||||
<li><strong>use_non_zero_discount_for_terminal_states</strong> – (bool)
|
||||
If set to True, the discount factor will be used for terminal states to bootstrap the next predicted state
|
||||
values. If set to False, the terminal states reward will be taken as the target return for the network.</li>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<footer>
|
||||
|
||||
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
|
||||
|
||||
<a href="../other/dfp.html" class="btn btn-neutral float-right" title="Direct Future Prediction" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="cppo.html" class="btn btn-neutral" title="Clipped Proximal Policy Optimization" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<hr/>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||||
|
||||
</footer>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</section>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
249
docs/components/agents/policy_optimization/hac.html
Normal file
249
docs/components/agents/policy_optimization/hac.html
Normal file
@@ -0,0 +1,249 @@
|
||||
|
||||
|
||||
<!DOCTYPE html>
|
||||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Hierarchical Actor Critic — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
<link rel="index" title="Index" href="../../../genindex.html" />
|
||||
<link rel="search" title="Search" href="../../../search.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
|
||||
|
||||
|
||||
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
|
||||
|
||||
|
||||
|
||||
|
||||
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
|
||||
|
||||
</a>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="search">
|
||||
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
|
||||
<input type="text" name="q" placeholder="Search docs" />
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<p class="caption"><span class="caption-text">Intro</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Design</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Contributing</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Components</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../index.html">Agents</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../architectures/index.html">Architectures</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../environments/index.html">Environments</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../exploration_policies/index.html">Exploration Policies</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../filters/index.html">Filters</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../memories/index.html">Memories</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../core_types.html">Core Types</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../spaces.html">Spaces</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../additional_parameters.html">Additional Parameters</a></li>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||||
|
||||
|
||||
<nav class="wy-nav-top" aria-label="top navigation">
|
||||
|
||||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||||
<a href="../../../index.html">Reinforcement Learning Coach</a>
|
||||
|
||||
</nav>
|
||||
|
||||
|
||||
<div class="wy-nav-content">
|
||||
|
||||
<div class="rst-content">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||||
|
||||
<ul class="wy-breadcrumbs">
|
||||
|
||||
<li><a href="../../../index.html">Docs</a> »</li>
|
||||
|
||||
<li>Hierarchical Actor Critic</li>
|
||||
|
||||
|
||||
<li class="wy-breadcrumbs-aside">
|
||||
|
||||
|
||||
<a href="../../../_sources/components/agents/policy_optimization/hac.rst.txt" rel="nofollow"> View page source</a>
|
||||
|
||||
|
||||
</li>
|
||||
|
||||
</ul>
|
||||
|
||||
|
||||
<hr/>
|
||||
</div>
|
||||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||||
<div itemprop="articleBody">
|
||||
|
||||
<div class="section" id="hierarchical-actor-critic">
|
||||
<h1>Hierarchical Actor Critic<a class="headerlink" href="#hierarchical-actor-critic" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>Actions space:</strong> Continuous</p>
|
||||
<p><strong>References:</strong> <a class="reference external" href="https://arxiv.org/abs/1805.08180">Hierarchical Reinforcement Learning with Hindsight</a></p>
|
||||
<div class="section" id="network-structure">
|
||||
<h2>Network Structure<a class="headerlink" href="#network-structure" title="Permalink to this headline">¶</a></h2>
|
||||
<img alt="../../../_images/ddpg.png" class="align-center" src="../../../_images/ddpg.png" />
|
||||
</div>
|
||||
<div class="section" id="algorithm-description">
|
||||
<h2>Algorithm Description<a class="headerlink" href="#algorithm-description" title="Permalink to this headline">¶</a></h2>
|
||||
<div class="section" id="choosing-an-action">
|
||||
<h3>Choosing an action<a class="headerlink" href="#choosing-an-action" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Pass the current states through the actor network, and get an action mean vector <span class="math notranslate nohighlight">\(\mu\)</span>.
|
||||
While in training phase, use a continuous exploration policy, such as the Ornstein-Uhlenbeck process,
|
||||
to add exploration noise to the action. When testing, use the mean vector <span class="math notranslate nohighlight">\(\mu\)</span> as-is.</p>
|
||||
</div>
|
||||
<div class="section" id="training-the-network">
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<footer>
|
||||
|
||||
|
||||
<hr/>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||||
|
||||
</footer>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</section>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
336
docs/components/agents/policy_optimization/pg.html
Normal file
336
docs/components/agents/policy_optimization/pg.html
Normal file
@@ -0,0 +1,336 @@
|
||||
|
||||
|
||||
<!DOCTYPE html>
|
||||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Policy Gradient — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
<link rel="index" title="Index" href="../../../genindex.html" />
|
||||
<link rel="search" title="Search" href="../../../search.html" />
|
||||
<link rel="next" title="Proximal Policy Optimization" href="ppo.html" />
|
||||
<link rel="prev" title="Persistent Advantage Learning" href="../value_optimization/pal.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
|
||||
|
||||
|
||||
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
|
||||
|
||||
|
||||
|
||||
|
||||
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
|
||||
|
||||
</a>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="search">
|
||||
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
|
||||
<input type="text" name="q" placeholder="Search docs" />
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<p class="caption"><span class="caption-text">Intro</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Design</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Contributing</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Components</span></p>
|
||||
<ul class="current">
|
||||
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
|
||||
<li class="toctree-l2"><a class="reference internal" href="ac.html">Actor-Critic</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/bs_dqn.html">Bootstrapped DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/categorical_dqn.html">Categorical DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dqn.html">Deep Q Networks</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dueling_dqn.html">Dueling DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/mmc.html">Mixed Monte Carlo</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/n_step.html">N-Step Q Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/naf.html">Normalized Advantage Functions</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/nec.html">Neural Episodic Control</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/pal.html">Persistent Advantage Learning</a></li>
|
||||
<li class="toctree-l2 current"><a class="current reference internal" href="#">Policy Gradient</a><ul>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#algorithm-description">Algorithm Description</a><ul>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#choosing-an-action-discrete-actions">Choosing an action - Discrete actions</a></li>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#training-the-network">Training the network</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="ppo.html">Proximal Policy Optimization</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/rainbow.html">Rainbow</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/qr_dqn.html">Quantile Regression DQN</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../architectures/index.html">Architectures</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../environments/index.html">Environments</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../exploration_policies/index.html">Exploration Policies</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../filters/index.html">Filters</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../memories/index.html">Memories</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../core_types.html">Core Types</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../spaces.html">Spaces</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../additional_parameters.html">Additional Parameters</a></li>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||||
|
||||
|
||||
<nav class="wy-nav-top" aria-label="top navigation">
|
||||
|
||||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||||
<a href="../../../index.html">Reinforcement Learning Coach</a>
|
||||
|
||||
</nav>
|
||||
|
||||
|
||||
<div class="wy-nav-content">
|
||||
|
||||
<div class="rst-content">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||||
|
||||
<ul class="wy-breadcrumbs">
|
||||
|
||||
<li><a href="../../../index.html">Docs</a> »</li>
|
||||
|
||||
<li><a href="../index.html">Agents</a> »</li>
|
||||
|
||||
<li>Policy Gradient</li>
|
||||
|
||||
|
||||
<li class="wy-breadcrumbs-aside">
|
||||
|
||||
|
||||
<a href="../../../_sources/components/agents/policy_optimization/pg.rst.txt" rel="nofollow"> View page source</a>
|
||||
|
||||
|
||||
</li>
|
||||
|
||||
</ul>
|
||||
|
||||
|
||||
<hr/>
|
||||
</div>
|
||||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||||
<div itemprop="articleBody">
|
||||
|
||||
<div class="section" id="policy-gradient">
|
||||
<h1>Policy Gradient<a class="headerlink" href="#policy-gradient" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>Actions space:</strong> Discrete | Continuous</p>
|
||||
<p><strong>References:</strong> <a class="reference external" href="http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf">Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning</a></p>
|
||||
<div class="section" id="network-structure">
|
||||
<h2>Network Structure<a class="headerlink" href="#network-structure" title="Permalink to this headline">¶</a></h2>
|
||||
<img alt="../../../_images/pg.png" class="align-center" src="../../../_images/pg.png" />
|
||||
</div>
|
||||
<div class="section" id="algorithm-description">
|
||||
<h2>Algorithm Description<a class="headerlink" href="#algorithm-description" title="Permalink to this headline">¶</a></h2>
|
||||
<div class="section" id="choosing-an-action-discrete-actions">
|
||||
<h3>Choosing an action - Discrete actions<a class="headerlink" href="#choosing-an-action-discrete-actions" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Run the current states through the network and get a policy distribution over the actions.
|
||||
While training, sample from the policy distribution. When testing, take the action with the highest probability.</p>
|
||||
</div>
|
||||
<div class="section" id="training-the-network">
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
<p>The policy head loss is defined as <span class="math notranslate nohighlight">\(L=-log (\pi) \cdot PolicyGradientRescaler\)</span>.
|
||||
The <code class="code docutils literal notranslate"><span class="pre">PolicyGradientRescaler</span></code> is used in order to reduce the policy gradient variance, which might be very noisy.
|
||||
This is done in order to reduce the variance of the updates, since noisy gradient updates might destabilize the policy’s
|
||||
convergence. The rescaler is a configurable parameter and there are few options to choose from:</p>
|
||||
<ul class="simple">
|
||||
<li><strong>Total Episode Return</strong> - The sum of all the discounted rewards during the episode.</li>
|
||||
<li><strong>Future Return</strong> - Return from each transition until the end of the episode.</li>
|
||||
<li><strong>Future Return Normalized by Episode</strong> - Future returns across the episode normalized by the episode’s mean and standard deviation.</li>
|
||||
<li><strong>Future Return Normalized by Timestep</strong> - Future returns normalized using running means and standard deviations,
|
||||
which are calculated seperately for each timestep, across different episodes.</li>
|
||||
</ul>
|
||||
<p>Gradients are accumulated over a number of full played episodes. The gradients accumulation over several episodes
|
||||
serves the same purpose - reducing the update variance. After accumulating gradients for several episodes,
|
||||
the gradients are then applied to the network.</p>
|
||||
<dl class="class">
|
||||
<dt id="rl_coach.agents.policy_gradients_agent.PolicyGradientAlgorithmParameters">
|
||||
<em class="property">class </em><code class="descclassname">rl_coach.agents.policy_gradients_agent.</code><code class="descname">PolicyGradientAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/policy_gradients_agent.html#PolicyGradientAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.policy_gradients_agent.PolicyGradientAlgorithmParameters" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||
<li><strong>policy_gradient_rescaler</strong> – (PolicyGradientRescaler)
|
||||
The rescaler type to use for the policy gradient loss. For policy gradients, we calculate log probability of
|
||||
the action and then multiply it by the policy gradient rescaler. The most basic rescaler is the discounter
|
||||
return, but there are other rescalers that are intended for reducing the variance of the updates.</li>
|
||||
<li><strong>apply_gradients_every_x_episodes</strong> – (int)
|
||||
The number of episodes between applying the accumulated gradients to the network. After every
|
||||
num_steps_between_gradient_updates steps, the agent will calculate the gradients for the collected data,
|
||||
it will then accumulate it in internal accumulators, and will only apply them to the network once in every
|
||||
apply_gradients_every_x_episodes episodes.</li>
|
||||
<li><strong>beta_entropy</strong> – (float)
|
||||
A factor which defines the amount of entropy regularization to apply to the network. The entropy of the actions
|
||||
will be added to the loss and scaled by the given beta factor.</li>
|
||||
<li><strong>num_steps_between_gradient_updates</strong> – (int)
|
||||
The number of steps between calculating gradients for the collected data. In the A3C paper, this parameter is
|
||||
called t_max. Since this algorithm is on-policy, only the steps collected between each two gradient calculations
|
||||
are used in the batch.</li>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<footer>
|
||||
|
||||
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
|
||||
|
||||
<a href="ppo.html" class="btn btn-neutral float-right" title="Proximal Policy Optimization" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="../value_optimization/pal.html" class="btn btn-neutral" title="Persistent Advantage Learning" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<hr/>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||||
|
||||
</footer>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</section>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
355
docs/components/agents/policy_optimization/ppo.html
Normal file
355
docs/components/agents/policy_optimization/ppo.html
Normal file
@@ -0,0 +1,355 @@
|
||||
|
||||
|
||||
<!DOCTYPE html>
|
||||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
<title>Proximal Policy Optimization — Reinforcement Learning Coach 0.11.0 documentation</title>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||||
<link rel="index" title="Index" href="../../../genindex.html" />
|
||||
<link rel="search" title="Search" href="../../../search.html" />
|
||||
<link rel="next" title="Rainbow" href="../value_optimization/rainbow.html" />
|
||||
<link rel="prev" title="Policy Gradient" href="pg.html" />
|
||||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||||
|
||||
|
||||
|
||||
<script src="../../../_static/js/modernizr.min.js"></script>
|
||||
|
||||
</head>
|
||||
|
||||
<body class="wy-body-for-nav">
|
||||
|
||||
|
||||
<div class="wy-grid-for-nav">
|
||||
|
||||
|
||||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||||
<div class="wy-side-scroll">
|
||||
<div class="wy-side-nav-search">
|
||||
|
||||
|
||||
|
||||
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
|
||||
|
||||
|
||||
|
||||
|
||||
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
|
||||
|
||||
</a>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="search">
|
||||
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
|
||||
<input type="text" name="q" placeholder="Search docs" />
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<p class="caption"><span class="caption-text">Intro</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Design</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Contributing</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
|
||||
</ul>
|
||||
<p class="caption"><span class="caption-text">Components</span></p>
|
||||
<ul class="current">
|
||||
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
|
||||
<li class="toctree-l2"><a class="reference internal" href="ac.html">Actor-Critic</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/bs_dqn.html">Bootstrapped DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/categorical_dqn.html">Categorical DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dqn.html">Deep Q Networks</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dueling_dqn.html">Dueling DQN</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/mmc.html">Mixed Monte Carlo</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/n_step.html">N-Step Q Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/naf.html">Normalized Advantage Functions</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/nec.html">Neural Episodic Control</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/pal.html">Persistent Advantage Learning</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="pg.html">Policy Gradient</a></li>
|
||||
<li class="toctree-l2 current"><a class="current reference internal" href="#">Proximal Policy Optimization</a><ul>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
|
||||
<li class="toctree-l3"><a class="reference internal" href="#algorithm-description">Algorithm Description</a><ul>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#choosing-an-action-continuous-actions">Choosing an action - Continuous actions</a></li>
|
||||
<li class="toctree-l4"><a class="reference internal" href="#training-the-network">Training the network</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/rainbow.html">Rainbow</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/qr_dqn.html">Quantile Regression DQN</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../architectures/index.html">Architectures</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../environments/index.html">Environments</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../exploration_policies/index.html">Exploration Policies</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../filters/index.html">Filters</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../memories/index.html">Memories</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../core_types.html">Core Types</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../spaces.html">Spaces</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="../../additional_parameters.html">Additional Parameters</a></li>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||||
|
||||
|
||||
<nav class="wy-nav-top" aria-label="top navigation">
|
||||
|
||||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||||
<a href="../../../index.html">Reinforcement Learning Coach</a>
|
||||
|
||||
</nav>
|
||||
|
||||
|
||||
<div class="wy-nav-content">
|
||||
|
||||
<div class="rst-content">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||||
|
||||
<ul class="wy-breadcrumbs">
|
||||
|
||||
<li><a href="../../../index.html">Docs</a> »</li>
|
||||
|
||||
<li><a href="../index.html">Agents</a> »</li>
|
||||
|
||||
<li>Proximal Policy Optimization</li>
|
||||
|
||||
|
||||
<li class="wy-breadcrumbs-aside">
|
||||
|
||||
|
||||
<a href="../../../_sources/components/agents/policy_optimization/ppo.rst.txt" rel="nofollow"> View page source</a>
|
||||
|
||||
|
||||
</li>
|
||||
|
||||
</ul>
|
||||
|
||||
|
||||
<hr/>
|
||||
</div>
|
||||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||||
<div itemprop="articleBody">
|
||||
|
||||
<div class="section" id="proximal-policy-optimization">
|
||||
<h1>Proximal Policy Optimization<a class="headerlink" href="#proximal-policy-optimization" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>Actions space:</strong> Discrete | Continuous</p>
|
||||
<p><strong>References:</strong> <a class="reference external" href="https://arxiv.org/pdf/1707.06347.pdf">Proximal Policy Optimization Algorithms</a></p>
|
||||
<div class="section" id="network-structure">
|
||||
<h2>Network Structure<a class="headerlink" href="#network-structure" title="Permalink to this headline">¶</a></h2>
|
||||
<img alt="../../../_images/ppo.png" class="align-center" src="../../../_images/ppo.png" />
|
||||
</div>
|
||||
<div class="section" id="algorithm-description">
|
||||
<h2>Algorithm Description<a class="headerlink" href="#algorithm-description" title="Permalink to this headline">¶</a></h2>
|
||||
<div class="section" id="choosing-an-action-continuous-actions">
|
||||
<h3>Choosing an action - Continuous actions<a class="headerlink" href="#choosing-an-action-continuous-actions" title="Permalink to this headline">¶</a></h3>
|
||||
<p>Run the observation through the policy network, and get the mean and standard deviation vectors for this observation.
|
||||
While in training phase, sample from a multi-dimensional Gaussian distribution with these mean and standard deviation values.
|
||||
When testing, just take the mean values predicted by the network.</p>
|
||||
</div>
|
||||
<div class="section" id="training-the-network">
|
||||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||||
<ol class="arabic simple">
|
||||
<li>Collect a big chunk of experience (in the order of thousands of transitions, sampled from multiple episodes).</li>
|
||||
<li>Calculate the advantages for each transition, using the <em>Generalized Advantage Estimation</em> method (Schulman ‘2015).</li>
|
||||
<li>Run a single training iteration of the value network using an L-BFGS optimizer. Unlike first order optimizers,
|
||||
the L-BFGS optimizer runs on the entire dataset at once, without batching.
|
||||
It continues running until some low loss threshold is reached. To prevent overfitting to the current dataset,
|
||||
the value targets are updated in a soft manner, using an Exponentially Weighted Moving Average, based on the total
|
||||
discounted returns of each state in each episode.</li>
|
||||
<li>Run several training iterations of the policy network. This is done by using the previously calculated advantages as
|
||||
targets. The loss function penalizes policies that deviate too far from the old policy (the policy that was used <em>before</em>
|
||||
starting to run the current set of training iterations) using a regularization term.</li>
|
||||
<li>After training is done, the last sampled KL divergence value will be compared with the <em>target KL divergence</em> value,
|
||||
in order to adapt the penalty coefficient used in the policy loss. If the KL divergence went too high,
|
||||
increase the penalty, if it went too low, reduce it. Otherwise, leave it unchanged.</li>
|
||||
</ol>
|
||||
<dl class="class">
|
||||
<dt id="rl_coach.agents.ppo_agent.PPOAlgorithmParameters">
|
||||
<em class="property">class </em><code class="descclassname">rl_coach.agents.ppo_agent.</code><code class="descname">PPOAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/ppo_agent.html#PPOAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.ppo_agent.PPOAlgorithmParameters" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||
<li><strong>policy_gradient_rescaler</strong> – (PolicyGradientRescaler)
|
||||
This represents how the critic will be used to update the actor. The critic value function is typically used
|
||||
to rescale the gradients calculated by the actor. There are several ways for doing this, such as using the
|
||||
advantage of the action, or the generalized advantage estimation (GAE) value.</li>
|
||||
<li><strong>gae_lambda</strong> – (float)
|
||||
The <span class="math notranslate nohighlight">\(\lambda\)</span> value is used within the GAE function in order to weight different bootstrap length
|
||||
estimations. Typical values are in the range 0.9-1, and define an exponential decay over the different
|
||||
n-step estimations.</li>
|
||||
<li><strong>target_kl_divergence</strong> – (float)
|
||||
The target kl divergence between the current policy distribution and the new policy. PPO uses a heuristic to
|
||||
bring the KL divergence to this value, by adding a penalty if the kl divergence is higher.</li>
|
||||
<li><strong>initial_kl_coefficient</strong> – (float)
|
||||
The initial weight that will be given to the KL divergence between the current and the new policy in the
|
||||
regularization factor.</li>
|
||||
<li><strong>high_kl_penalty_coefficient</strong> – (float)
|
||||
The penalty that will be given for KL divergence values which are highes than what was defined as the target.</li>
|
||||
<li><strong>clip_likelihood_ratio_using_epsilon</strong> – (float)
|
||||
If not None, the likelihood ratio between the current and new policy in the PPO loss function will be
|
||||
clipped to the range [1-clip_likelihood_ratio_using_epsilon, 1+clip_likelihood_ratio_using_epsilon].
|
||||
This is typically used in the Clipped PPO version of PPO, and should be set to None in regular PPO
|
||||
implementations.</li>
|
||||
<li><strong>value_targets_mix_fraction</strong> – (float)
|
||||
The targets for the value network are an exponential weighted moving average which uses this mix fraction to
|
||||
define how much of the new targets will be taken into account when calculating the loss.
|
||||
This value should be set to the range (0,1], where 1 means that only the new targets will be taken into account.</li>
|
||||
<li><strong>estimate_state_value_using_gae</strong> – (bool)
|
||||
If set to True, the state value will be estimated using the GAE technique.</li>
|
||||
<li><strong>use_kl_regularization</strong> – (bool)
|
||||
If set to True, the loss function will be regularized using the KL diveregence between the current and new
|
||||
policy, to bound the change of the policy during the network update.</li>
|
||||
<li><strong>beta_entropy</strong> – (float)
|
||||
An entropy regulaization term can be added to the loss function in order to control exploration. This term
|
||||
is weighted using the <span class="math notranslate nohighlight">\(eta\)</span> value defined by beta_entropy.</li>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<footer>
|
||||
|
||||
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
|
||||
|
||||
<a href="../value_optimization/rainbow.html" class="btn btn-neutral float-right" title="Rainbow" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||||
|
||||
|
||||
<a href="pg.html" class="btn btn-neutral" title="Policy Gradient" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<hr/>
|
||||
|
||||
<div role="contentinfo">
|
||||
<p>
|
||||
© Copyright 2018, Intel AI Lab
|
||||
|
||||
</p>
|
||||
</div>
|
||||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||||
|
||||
</footer>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</section>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||||
|
||||
<script type="text/javascript">
|
||||
jQuery(function () {
|
||||
SphinxRtdTheme.Navigation.enable(true);
|
||||
});
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
Reference in New Issue
Block a user