1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

Enabling-more-agents-for-Batch-RL-and-cleanup (#258)

allowing for the last training batch drawn to be smaller than batch_size + adding support for more agents in BatchRL by adding softmax with temperature to the corresponding heads + adding a CartPole_QR_DQN preset with a golden test + cleanups
This commit is contained in:
Gal Leibovich
2019-03-21 16:10:29 +02:00
committed by GitHub
parent abec59f367
commit 6e08c55ad5
24 changed files with 152 additions and 69 deletions

View File

@@ -18,11 +18,9 @@ from typing import Union
import numpy as np
from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAlgorithmParameters
from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAgentParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.base_parameters import AgentParameters
from rl_coach.exploration_policies.bootstrapped import BootstrappedParameters
from rl_coach.memories.non_episodic.experience_replay import ExperienceReplayParameters
class BootstrappedDQNNetworkParameters(DQNNetworkParameters):
@@ -32,12 +30,11 @@ class BootstrappedDQNNetworkParameters(DQNNetworkParameters):
self.heads_parameters[0].rescale_gradient_from_head_by_factor = 1.0/self.heads_parameters[0].num_output_head_copies
class BootstrappedDQNAgentParameters(AgentParameters):
class BootstrappedDQNAgentParameters(DQNAgentParameters):
def __init__(self):
super().__init__(algorithm=DQNAlgorithmParameters(),
exploration=BootstrappedParameters(),
memory=ExperienceReplayParameters(),
networks={"main": BootstrappedDQNNetworkParameters()})
super().__init__()
self.exploration = BootstrappedParameters()
self.network_wrappers = {"main": BootstrappedDQNNetworkParameters()}
@property
def path(self):
@@ -65,13 +62,14 @@ class BootstrappedDQNAgent(ValueOptimizationAgent):
TD_targets = result[self.ap.exploration.architecture_num_q_heads:]
# add Q value samples for logging
self.q_values.add_sample(TD_targets)
# initialize with the current prediction so that we will
# only update the action that we have actually done in this transition
for i in range(self.ap.network_wrappers['main'].batch_size):
for i in range(batch.size):
mask = batch[i].info['mask']
for head_idx in range(self.ap.exploration.architecture_num_q_heads):
self.q_values.add_sample(TD_targets[head_idx])
if mask[head_idx] == 1:
selected_action = np.argmax(next_states_online_values[head_idx][i], 0)
TD_targets[head_idx][i, batch.actions()[i]] = \