mirror of
https://github.com/gryf/coach.git
synced 2026-02-19 07:55:49 +01:00
Enabling-more-agents-for-Batch-RL-and-cleanup (#258)
allowing for the last training batch drawn to be smaller than batch_size + adding support for more agents in BatchRL by adding softmax with temperature to the corresponding heads + adding a CartPole_QR_DQN preset with a golden test + cleanups
This commit is contained in:
55
rl_coach/presets/CartPole_QR_DQN.py
Normal file
55
rl_coach/presets/CartPole_QR_DQN.py
Normal file
@@ -0,0 +1,55 @@
|
||||
from rl_coach.agents.qr_dqn_agent import QuantileRegressionDQNAgentParameters
|
||||
from rl_coach.agents.rainbow_dqn_agent import RainbowDQNAgentParameters
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.gym_environment import GymVectorEnvironment
|
||||
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
||||
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
||||
from rl_coach.memories.memory import MemoryGranularity
|
||||
from rl_coach.schedules import LinearSchedule
|
||||
|
||||
####################
|
||||
# Graph Scheduling #
|
||||
####################
|
||||
|
||||
schedule_params = ScheduleParameters()
|
||||
schedule_params.improve_steps = TrainingSteps(10000000000)
|
||||
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
|
||||
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
||||
schedule_params.heatup_steps = EnvironmentSteps(1000)
|
||||
|
||||
#########
|
||||
# Agent #
|
||||
#########
|
||||
agent_params = QuantileRegressionDQNAgentParameters()
|
||||
|
||||
# DQN params
|
||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
|
||||
agent_params.algorithm.discount = 0.99
|
||||
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
|
||||
agent_params.algorithm.atoms = 50
|
||||
# NN configuration
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.0005
|
||||
|
||||
# ER size
|
||||
agent_params.memory.max_size = (MemoryGranularity.Transitions, 40000)
|
||||
|
||||
# E-Greedy schedule
|
||||
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
|
||||
|
||||
################
|
||||
# Environment #
|
||||
################
|
||||
env_params = GymVectorEnvironment(level='CartPole-v0')
|
||||
|
||||
########
|
||||
# Test #
|
||||
########
|
||||
preset_validation_params = PresetValidationParameters()
|
||||
preset_validation_params.test = True
|
||||
preset_validation_params.min_reward_threshold = 150
|
||||
preset_validation_params.max_episodes_to_achieve_reward = 250
|
||||
|
||||
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
||||
schedule_params=schedule_params, vis_params=VisualizationParameters(),
|
||||
preset_validation_params=preset_validation_params)
|
||||
Reference in New Issue
Block a user