1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00

Itaicaspi/episode reset refactoring (#105)

* reordering of the episode reset operation and allowing to store episodes only when they are terminated

* reordering of the episode reset operation and allowing to store episodes only when they are terminated

* revert tensorflow-gpu to 1.9.0 + bug fix in should_train()

* tests readme file and refactoring of policy optimization agent train function

* Update README.md

* Update README.md

* additional policy optimization train function simplifications

* Updated the traces after the reordering of the environment reset

* docker and jenkins files

* updated the traces to the ones from within the docker container

* updated traces and added control suite to the docker

* updated jenkins file with the intel proxy + updated doom basic a3c test params

* updated line breaks in jenkins file

* added a missing line break in jenkins file

* refining trace tests ignored presets + adding a configurable beta entropy value

* switch the order of trace and golden tests in jenkins + fix golden tests processes not killed issue

* updated benchmarks for dueling ddqn breakout and pong

* allowing dynamic updates to the loss weights + bug fix in episode.update_returns

* remove docker and jenkins file
This commit is contained in:
Itai Caspi
2018-09-04 15:07:54 +03:00
committed by GitHub
parent 7086492127
commit 72a1d9d426
92 changed files with 9803 additions and 9740 deletions

View File

@@ -46,7 +46,7 @@ class DuelingQHead(QHead):
with tf.variable_scope("action_advantage"):
self.action_advantage = self.dense_layer(512)(input_layer, activation=self.activation_function, name='fc1')
self.action_advantage = self.dense_layer(self.num_actions)(self.action_advantage, name='fc2')
self.action_mean = tf.reduce_mean(self.action_advantage, axis=1, keep_dims=True)
self.action_mean = tf.reduce_mean(self.action_advantage, axis=1, keepdims=True)
self.action_advantage = self.action_advantage - self.action_mean
# merge to state-action value function Q

View File

@@ -59,7 +59,10 @@ class Head(object):
self.loss = []
self.loss_type = []
self.regularizations = []
self.loss_weight = force_list(loss_weight)
# self.loss_weight = force_list(loss_weight)
self.loss_weight = tf.Variable(force_list(loss_weight), trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
self.loss_weight_placeholder = tf.placeholder("float")
self.set_loss_weight = tf.assign(self.loss_weight, self.loss_weight_placeholder)
self.target = []
self.importance_weight = []
self.input = []

View File

@@ -48,7 +48,11 @@ class PolicyHead(Head):
# a scalar weight that penalizes low entropy values to encourage exploration
if hasattr(agent_parameters.algorithm, 'beta_entropy'):
self.beta = agent_parameters.algorithm.beta_entropy
# we set the beta value as a tf variable so it can be updated later if needed
self.beta = tf.Variable(agent_parameters.algorithm.beta_entropy,
trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
self.beta_placeholder = tf.placeholder('float')
self.set_beta = tf.assign(self.beta, self.beta_placeholder)
# a scalar weight that penalizes high activation values (before the activation function) for the final layer
if hasattr(agent_parameters.algorithm, 'action_penalty'):