1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00

SAC algorithm (#282)

* SAC algorithm

* SAC - updates to agent (learn_from_batch), sac_head and sac_q_head to fix problem in gradient calculation. Now SAC agents is able to train.
gym_environment - fixing an error in access to gym.spaces

* Soft Actor Critic - code cleanup

* code cleanup

* V-head initialization fix

* SAC benchmarks

* SAC Documentation

* typo fix

* documentation fixes

* documentation and version update

* README typo
This commit is contained in:
guyk1971
2019-05-01 18:37:49 +03:00
committed by shadiendrawis
parent 33dc29ee99
commit 74db141d5e
92 changed files with 2812 additions and 402 deletions

View File

@@ -387,6 +387,8 @@
<span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">online_network</span><span class="o">.</span><span class="n">output_heads</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">likelihood_ratio</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">online_network</span><span class="o">.</span><span class="n">output_heads</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">clipped_likelihood_ratio</span><span class="p">]</span>
<span class="c1"># TODO-fixme if batch.size / self.ap.network_wrappers[&#39;main&#39;].batch_size is not an integer, we do not train on</span>
<span class="c1"># some of the data</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">size</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">network_wrappers</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">batch_size</span><span class="p">)):</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">i</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">network_wrappers</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">batch_size</span>
<span class="n">end</span> <span class="o">=</span> <span class="p">(</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">ap</span><span class="o">.</span><span class="n">network_wrappers</span><span class="p">[</span><span class="s1">&#39;main&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">batch_size</span>