mirror of
https://github.com/gryf/coach.git
synced 2026-02-13 20:35:48 +01:00
SAC algorithm (#282)
* SAC algorithm * SAC - updates to agent (learn_from_batch), sac_head and sac_q_head to fix problem in gradient calculation. Now SAC agents is able to train. gym_environment - fixing an error in access to gym.spaces * Soft Actor Critic - code cleanup * code cleanup * V-head initialization fix * SAC benchmarks * SAC Documentation * typo fix * documentation fixes * documentation and version update * README typo
This commit is contained in:
@@ -12,6 +12,8 @@ from .quantile_regression_q_head import QuantileRegressionQHead
|
||||
from .rainbow_q_head import RainbowQHead
|
||||
from .v_head import VHead
|
||||
from .acer_policy_head import ACERPolicyHead
|
||||
from .sac_head import SACPolicyHead
|
||||
from .sac_q_head import SACQHead
|
||||
from .classification_head import ClassificationHead
|
||||
from .cil_head import RegressionHead
|
||||
|
||||
@@ -30,6 +32,8 @@ __all__ = [
|
||||
'RainbowQHead',
|
||||
'VHead',
|
||||
'ACERPolicyHead',
|
||||
'ClassificationHead'
|
||||
'SACPolicyHead',
|
||||
'SACQHead',
|
||||
'ClassificationHead',
|
||||
'RegressionHead'
|
||||
]
|
||||
|
||||
107
rl_coach/architectures/tensorflow_components/heads/sac_head.py
Normal file
107
rl_coach/architectures/tensorflow_components/heads/sac_head.py
Normal file
@@ -0,0 +1,107 @@
|
||||
#
|
||||
# Copyright (c) 2019 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.tensorflow_components.heads.head import Head
|
||||
from rl_coach.base_parameters import AgentParameters
|
||||
from rl_coach.core_types import ActionProbabilities
|
||||
from rl_coach.spaces import SpacesDefinition
|
||||
from rl_coach.utils import eps
|
||||
|
||||
LOG_SIG_CAP_MAX = 2
|
||||
LOG_SIG_CAP_MIN = -20
|
||||
|
||||
|
||||
class SACPolicyHead(Head):
|
||||
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
|
||||
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
|
||||
squash: bool = True, dense_layer=Dense):
|
||||
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
|
||||
dense_layer=dense_layer)
|
||||
self.name = 'sac_policy_head'
|
||||
self.return_type = ActionProbabilities
|
||||
self.num_actions = self.spaces.action.shape # continuous actions
|
||||
self.squash = squash # squashing using tanh
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
self.given_raw_actions = tf.placeholder(tf.float32, [None, self.num_actions], name="actions")
|
||||
self.input = [self.given_raw_actions]
|
||||
self.output = []
|
||||
|
||||
# build the network
|
||||
self._build_continuous_net(input_layer, self.spaces.action)
|
||||
|
||||
def _squash_correction(self,actions):
|
||||
'''
|
||||
correct squash operation (in case of bounded actions) according to appendix C in the paper.
|
||||
NOTE : this correction assume the squash is done with tanh.
|
||||
:param actions: unbounded actions
|
||||
:return: the correction to be applied to the log_prob of the actions, assuming tanh squash
|
||||
'''
|
||||
if not self.squash:
|
||||
return 0
|
||||
return tf.reduce_sum(tf.log(1 - tf.tanh(actions) ** 2 + eps), axis=1)
|
||||
|
||||
def _build_continuous_net(self, input_layer, action_space):
|
||||
num_actions = action_space.shape[0]
|
||||
|
||||
self.policy_mu_and_logsig = self.dense_layer(2*num_actions)(input_layer, name='policy_mu_logsig')
|
||||
self.policy_mean = tf.identity(self.policy_mu_and_logsig[..., :num_actions], name='policy_mean')
|
||||
self.policy_log_std = tf.clip_by_value(self.policy_mu_and_logsig[..., num_actions:],
|
||||
LOG_SIG_CAP_MIN, LOG_SIG_CAP_MAX,name='policy_log_std')
|
||||
|
||||
self.output.append(self.policy_mean) # output[0]
|
||||
self.output.append(self.policy_log_std) # output[1]
|
||||
|
||||
# define the distributions for the policy
|
||||
# Tensorflow's multivariate normal distribution supports reparameterization
|
||||
tfd = tf.contrib.distributions
|
||||
self.policy_distribution = tfd.MultivariateNormalDiag(loc=self.policy_mean,
|
||||
scale_diag=tf.exp(self.policy_log_std))
|
||||
|
||||
# define network outputs
|
||||
# note that tensorflow supports reparametrization.
|
||||
# i.e. policy_action_sample is a tensor through which gradients can flow
|
||||
self.raw_actions = self.policy_distribution.sample()
|
||||
|
||||
if self.squash:
|
||||
self.actions = tf.tanh(self.raw_actions)
|
||||
# correct log_prob in case of squash (see appendix C in the paper)
|
||||
squash_correction = self._squash_correction(self.raw_actions)
|
||||
else:
|
||||
self.actions = self.raw_actions
|
||||
squash_correction = 0
|
||||
|
||||
# policy_action_logprob is a tensor through which gradients can flow
|
||||
self.sampled_actions_logprob = self.policy_distribution.log_prob(self.raw_actions) - squash_correction
|
||||
self.sampled_actions_logprob_mean = tf.reduce_mean(self.sampled_actions_logprob)
|
||||
|
||||
self.output.append(self.raw_actions) # output[2] : sampled raw action (before squash)
|
||||
self.output.append(self.actions) # output[3] : squashed (if needed) version of sampled raw_actions
|
||||
self.output.append(self.sampled_actions_logprob) # output[4]: log prob of sampled action (squash corrected)
|
||||
self.output.append(self.sampled_actions_logprob_mean) # output[5]: mean of log prob of sampled actions (squash corrected)
|
||||
|
||||
def __str__(self):
|
||||
result = [
|
||||
"policy head:"
|
||||
"\t\tDense (num outputs = 256)",
|
||||
"\t\tDense (num outputs = 256)",
|
||||
"\t\tDense (num outputs = {0})".format(2*self.num_actions),
|
||||
"policy_mu = output[:num_actions], policy_std = output[num_actions:]"
|
||||
]
|
||||
return '\n'.join(result)
|
||||
116
rl_coach/architectures/tensorflow_components/heads/sac_q_head.py
Normal file
116
rl_coach/architectures/tensorflow_components/heads/sac_q_head.py
Normal file
@@ -0,0 +1,116 @@
|
||||
#
|
||||
# Copyright (c) 2019 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.tensorflow_components.heads.head import Head
|
||||
from rl_coach.base_parameters import AgentParameters
|
||||
from rl_coach.core_types import QActionStateValue
|
||||
from rl_coach.spaces import SpacesDefinition, BoxActionSpace
|
||||
|
||||
|
||||
class SACQHead(Head):
|
||||
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
|
||||
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
|
||||
dense_layer=Dense):
|
||||
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
|
||||
dense_layer=dense_layer)
|
||||
self.name = 'q_values_head'
|
||||
if isinstance(self.spaces.action, BoxActionSpace):
|
||||
self.num_actions = self.spaces.action.shape # continuous actions
|
||||
else:
|
||||
raise ValueError(
|
||||
'SACQHead does not support action spaces of type: {class_name}'.format(
|
||||
class_name=self.spaces.action.__class__.__name__,
|
||||
)
|
||||
)
|
||||
self.return_type = QActionStateValue
|
||||
# extract the topology from the SACQHeadParameters
|
||||
self.network_layers_sizes = agent_parameters.network_wrappers['q'].heads_parameters[0].network_layers_sizes
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
# SAC Q network is basically 2 networks running in parallel on the same input (state , action)
|
||||
# state is the observation fed through the input_layer, action is fed through placeholder to the header
|
||||
# each is calculating q value : q1(s,a) and q2(s,a)
|
||||
# the output of the head is min(q1,q2)
|
||||
self.actions = tf.placeholder(tf.float32, [None, self.num_actions], name="actions")
|
||||
self.target = tf.placeholder(tf.float32, [None, 1], name="q_targets")
|
||||
self.input = [self.actions]
|
||||
self.output = []
|
||||
# Note (1) : in the author's implementation of sac (in rllab) they summarize the embedding of observation and
|
||||
# action (broadcasting the bias) in the first layer of the network.
|
||||
|
||||
# build q1 network head
|
||||
with tf.variable_scope("q1_head"):
|
||||
layer_size = self.network_layers_sizes[0]
|
||||
qi_obs_emb = self.dense_layer(layer_size)(input_layer, activation=self.activation_function)
|
||||
qi_act_emb = self.dense_layer(layer_size)(self.actions, activation=self.activation_function)
|
||||
qi_output = qi_obs_emb + qi_act_emb # merging the inputs by summarizing them (see Note (1))
|
||||
for layer_size in self.network_layers_sizes[1:]:
|
||||
qi_output = self.dense_layer(layer_size)(qi_output, activation=self.activation_function)
|
||||
# the output layer
|
||||
self.q1_output = self.dense_layer(1)(qi_output, name='q1_output')
|
||||
|
||||
# build q2 network head
|
||||
with tf.variable_scope("q2_head"):
|
||||
layer_size = self.network_layers_sizes[0]
|
||||
qi_obs_emb = self.dense_layer(layer_size)(input_layer, activation=self.activation_function)
|
||||
qi_act_emb = self.dense_layer(layer_size)(self.actions, activation=self.activation_function)
|
||||
qi_output = qi_obs_emb + qi_act_emb # merging the inputs by summarizing them (see Note (1))
|
||||
for layer_size in self.network_layers_sizes[1:]:
|
||||
qi_output = self.dense_layer(layer_size)(qi_output, activation=self.activation_function)
|
||||
# the output layer
|
||||
self.q2_output = self.dense_layer(1)(qi_output, name='q2_output')
|
||||
|
||||
# take the minimum as the network's output. this is the log_target (in the original implementation)
|
||||
self.q_output = tf.minimum(self.q1_output, self.q2_output, name='q_output')
|
||||
# the policy gradients
|
||||
# self.q_output_mean = tf.reduce_mean(self.q1_output) # option 1: use q1
|
||||
self.q_output_mean = tf.reduce_mean(self.q_output) # option 2: use min(q1,q2)
|
||||
|
||||
self.output.append(self.q_output)
|
||||
self.output.append(self.q_output_mean)
|
||||
|
||||
# defining the loss
|
||||
self.q1_loss = 0.5*tf.reduce_mean(tf.square(self.q1_output - self.target))
|
||||
self.q2_loss = 0.5*tf.reduce_mean(tf.square(self.q2_output - self.target))
|
||||
# eventually both losses are depends on different parameters so we can sum them up
|
||||
self.loss = self.q1_loss+self.q2_loss
|
||||
tf.losses.add_loss(self.loss)
|
||||
|
||||
def __str__(self):
|
||||
result = [
|
||||
"q1 output"
|
||||
"\t\tDense (num outputs = 256)",
|
||||
"\t\tDense (num outputs = 256)",
|
||||
"\t\tDense (num outputs = 1)",
|
||||
"q2 output"
|
||||
"\t\tDense (num outputs = 256)",
|
||||
"\t\tDense (num outputs = 256)",
|
||||
"\t\tDense (num outputs = 1)",
|
||||
"min(Q1,Q2)"
|
||||
]
|
||||
return '\n'.join(result)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -26,7 +26,7 @@ from rl_coach.spaces import SpacesDefinition
|
||||
class VHead(Head):
|
||||
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
|
||||
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
|
||||
dense_layer=Dense):
|
||||
dense_layer=Dense, initializer='normalized_columns'):
|
||||
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
|
||||
dense_layer=dense_layer)
|
||||
self.name = 'v_values_head'
|
||||
@@ -37,10 +37,15 @@ class VHead(Head):
|
||||
else:
|
||||
self.loss_type = tf.losses.mean_squared_error
|
||||
|
||||
self.initializer = initializer
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
# Standard V Network
|
||||
self.output = self.dense_layer(1)(input_layer, name='output',
|
||||
kernel_initializer=normalized_columns_initializer(1.0))
|
||||
if self.initializer == 'normalized_columns':
|
||||
self.output = self.dense_layer(1)(input_layer, name='output',
|
||||
kernel_initializer=normalized_columns_initializer(1.0))
|
||||
elif self.initializer == 'xavier' or self.initializer is None:
|
||||
self.output = self.dense_layer(1)(input_layer, name='output')
|
||||
|
||||
def __str__(self):
|
||||
result = [
|
||||
|
||||
Reference in New Issue
Block a user