mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Integrate coach.py params with distributed Coach. (#42)
* Integrate coach.py params with distributed Coach. * Minor improvements - Use enums instead of constants. - Reduce code duplication. - Ask experiment name with timeout.
This commit is contained in:
committed by
GitHub
parent
95b4fc6888
commit
7e7006305a
@@ -1,24 +1,18 @@
|
||||
"""
|
||||
"""
|
||||
import argparse
|
||||
import time
|
||||
import json
|
||||
|
||||
from threading import Thread
|
||||
|
||||
from rl_coach.base_parameters import TaskParameters
|
||||
from rl_coach.coach import expand_preset
|
||||
from rl_coach.base_parameters import TaskParameters, DistributedCoachSynchronizationType
|
||||
from rl_coach import core_types
|
||||
from rl_coach.utils import short_dynamic_import
|
||||
from rl_coach.memories.backend.memory_impl import construct_memory_params
|
||||
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
|
||||
|
||||
|
||||
def data_store_ckpt_save(data_store):
|
||||
while True:
|
||||
data_store.save_to_store()
|
||||
time.sleep(10)
|
||||
|
||||
def training_worker(graph_manager, checkpoint_dir, policy_type):
|
||||
|
||||
def training_worker(graph_manager, checkpoint_dir):
|
||||
"""
|
||||
restore a checkpoint then perform rollouts using the restored model
|
||||
"""
|
||||
@@ -49,55 +43,7 @@ def training_worker(graph_manager, checkpoint_dir, policy_type):
|
||||
graph_manager.evaluate(graph_manager.evaluation_steps)
|
||||
eval_offset += 1
|
||||
|
||||
if policy_type == 'ON':
|
||||
if graph_manager.agent_params.algorithm.distributed_coach_synchronization_type == DistributedCoachSynchronizationType.SYNC:
|
||||
graph_manager.save_checkpoint()
|
||||
else:
|
||||
graph_manager.occasionally_save_checkpoint()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-p', '--preset',
|
||||
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
|
||||
type=str,
|
||||
required=True)
|
||||
parser.add_argument('--checkpoint-dir',
|
||||
help='(string) Path to a folder containing a checkpoint to write the model to.',
|
||||
type=str,
|
||||
default='/checkpoint')
|
||||
parser.add_argument('--memory-backend-params',
|
||||
help="(string) JSON string of the memory backend params",
|
||||
type=str)
|
||||
parser.add_argument('--data-store-params',
|
||||
help="(string) JSON string of the data store params",
|
||||
type=str)
|
||||
parser.add_argument('--policy-type',
|
||||
help="(string) The type of policy: OFF/ON",
|
||||
type=str,
|
||||
default='OFF')
|
||||
args = parser.parse_args()
|
||||
|
||||
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
|
||||
|
||||
if args.memory_backend_params:
|
||||
args.memory_backend_params = json.loads(args.memory_backend_params)
|
||||
args.memory_backend_params['run_type'] = 'trainer'
|
||||
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
|
||||
|
||||
if args.data_store_params:
|
||||
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
|
||||
data_store_params.checkpoint_dir = args.checkpoint_dir
|
||||
graph_manager.data_store_params = data_store_params
|
||||
# data_store = get_data_store(data_store_params)
|
||||
# thread = Thread(target = data_store_ckpt_save, args = [data_store])
|
||||
# thread.start()
|
||||
|
||||
training_worker(
|
||||
graph_manager=graph_manager,
|
||||
checkpoint_dir=args.checkpoint_dir,
|
||||
policy_type=args.policy_type
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user