1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00
This commit is contained in:
Gal Leibovich
2019-06-16 11:11:21 +03:00
committed by GitHub
parent 8df3c46756
commit 7eb884c5b2
107 changed files with 2200 additions and 495 deletions

View File

@@ -124,6 +124,7 @@
<li class="toctree-l2"><a class="reference internal" href="cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
@@ -239,7 +240,7 @@ the expert for each state.</p>
</ol>
<dl class="class">
<dt id="rl_coach.agents.bc_agent.BCAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.bc_agent.</code><code class="descname">BCAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/bc_agent.html#BCAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.bc_agent.BCAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.bc_agent.</code><code class="sig-name descname">BCAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/bc_agent.html#BCAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.bc_agent.BCAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>

View File

@@ -124,6 +124,7 @@
</li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
@@ -245,7 +246,7 @@ so that the loss for the other heads will be zeroed out.</p></li>
</ol>
<dl class="class">
<dt id="rl_coach.agents.cil_agent.CILAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.cil_agent.</code><code class="descname">CILAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/cil_agent.html#CILAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.cil_agent.CILAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.cil_agent.</code><code class="sig-name descname">CILAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/cil_agent.html#CILAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.cil_agent.CILAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>state_key_with_the_class_index</strong> (str)

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="value_optimization/double_dqn.html">Double DQN</a></li>
@@ -225,6 +226,7 @@ A detailed description of those algorithms can be found by navigating to each of
<li class="toctree-l1"><a class="reference internal" href="imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l1"><a class="reference internal" href="policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l1"><a class="reference internal" href="policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l1"><a class="reference internal" href="policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l1"><a class="reference internal" href="other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l1"><a class="reference internal" href="value_optimization/double_dqn.html">Double DQN</a></li>
@@ -243,7 +245,7 @@ A detailed description of those algorithms can be found by navigating to each of
</div>
<dl class="class">
<dt id="rl_coach.base_parameters.AgentParameters">
<em class="property">class </em><code class="descclassname">rl_coach.base_parameters.</code><code class="descname">AgentParameters</code><span class="sig-paren">(</span><em>algorithm: rl_coach.base_parameters.AlgorithmParameters, exploration: ExplorationParameters, memory: MemoryParameters, networks: Dict[str, rl_coach.base_parameters.NetworkParameters], visualization: rl_coach.base_parameters.VisualizationParameters = &lt;rl_coach.base_parameters.VisualizationParameters object&gt;</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/base_parameters.html#AgentParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.base_parameters.AgentParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.base_parameters.</code><code class="sig-name descname">AgentParameters</code><span class="sig-paren">(</span><em class="sig-param">algorithm: rl_coach.base_parameters.AlgorithmParameters, exploration: ExplorationParameters, memory: MemoryParameters, networks: Dict[str, rl_coach.base_parameters.NetworkParameters], visualization: rl_coach.base_parameters.VisualizationParameters = &lt;rl_coach.base_parameters.VisualizationParameters object&gt;</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/base_parameters.html#AgentParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.base_parameters.AgentParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
@@ -270,7 +272,7 @@ used for visualization purposes, such as printing to the screen, rendering, and
<dl class="class">
<dt id="rl_coach.agents.agent.Agent">
<em class="property">class </em><code class="descclassname">rl_coach.agents.agent.</code><code class="descname">Agent</code><span class="sig-paren">(</span><em>agent_parameters: rl_coach.base_parameters.AgentParameters</em>, <em>parent: Union[LevelManager</em>, <em>CompositeAgent] = None</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.agent.</code><code class="sig-name descname">Agent</code><span class="sig-paren">(</span><em class="sig-param">agent_parameters: rl_coach.base_parameters.AgentParameters</em>, <em class="sig-param">parent: Union[LevelManager</em>, <em class="sig-param">CompositeAgent] = None</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>agent_parameters</strong> A AgentParameters class instance with all the agent parameters</p>
@@ -278,7 +280,7 @@ used for visualization purposes, such as printing to the screen, rendering, and
</dl>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.act">
<code class="descname">act</code><span class="sig-paren">(</span><em>action: Union[None</em>, <em>int</em>, <em>float</em>, <em>numpy.ndarray</em>, <em>List] = None</em><span class="sig-paren">)</span> &#x2192; rl_coach.core_types.ActionInfo<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.act"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.act" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">act</code><span class="sig-paren">(</span><em class="sig-param">action: Union[None</em>, <em class="sig-param">int</em>, <em class="sig-param">float</em>, <em class="sig-param">numpy.ndarray</em>, <em class="sig-param">List] = None</em><span class="sig-paren">)</span> &#x2192; rl_coach.core_types.ActionInfo<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.act"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.act" title="Permalink to this definition"></a></dt>
<dd><p>Given the agents current knowledge, decide on the next action to apply to the environment</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
@@ -292,7 +294,7 @@ used for visualization purposes, such as printing to the screen, rendering, and
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.call_memory">
<code class="descname">call_memory</code><span class="sig-paren">(</span><em>func</em>, <em>args=()</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.call_memory"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.call_memory" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">call_memory</code><span class="sig-paren">(</span><em class="sig-param">func</em>, <em class="sig-param">args=()</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.call_memory"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.call_memory" title="Permalink to this definition"></a></dt>
<dd><p>This function is a wrapper to allow having the same calls for shared or unshared memories.
It should be used instead of calling the memory directly in order to allow different algorithms to work
both with a shared and a local memory.</p>
@@ -311,7 +313,7 @@ both with a shared and a local memory.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.choose_action">
<code class="descname">choose_action</code><span class="sig-paren">(</span><em>curr_state</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.choose_action"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.choose_action" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">choose_action</code><span class="sig-paren">(</span><em class="sig-param">curr_state</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.choose_action"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.choose_action" title="Permalink to this definition"></a></dt>
<dd><p>choose an action to act with in the current episode being played. Different behavior might be exhibited when
training or testing.</p>
<dl class="field-list simple">
@@ -326,7 +328,7 @@ training or testing.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.collect_savers">
<code class="descname">collect_savers</code><span class="sig-paren">(</span><em>parent_path_suffix: str</em><span class="sig-paren">)</span> &#x2192; rl_coach.saver.SaverCollection<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.collect_savers"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.collect_savers" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">collect_savers</code><span class="sig-paren">(</span><em class="sig-param">parent_path_suffix: str</em><span class="sig-paren">)</span> &#x2192; rl_coach.saver.SaverCollection<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.collect_savers"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.collect_savers" title="Permalink to this definition"></a></dt>
<dd><p>Collect all of agents network savers
:param parent_path_suffix: path suffix of the parent of the agent
(could be name of level manager or composite agent)
@@ -335,7 +337,7 @@ training or testing.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.create_networks">
<code class="descname">create_networks</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; Dict[str, rl_coach.architectures.network_wrapper.NetworkWrapper]<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.create_networks"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.create_networks" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">create_networks</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; Dict[str, rl_coach.architectures.network_wrapper.NetworkWrapper]<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.create_networks"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.create_networks" title="Permalink to this definition"></a></dt>
<dd><p>Create all the networks of the agent.
The network creation will be done after setting the environment parameters for the agent, since they are needed
for creating the network.</p>
@@ -346,9 +348,16 @@ for creating the network.</p>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.freeze_memory">
<code class="sig-name descname">freeze_memory</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.freeze_memory"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.freeze_memory" title="Permalink to this definition"></a></dt>
<dd><p>Shuffle episodes in the memory and freeze it to make sure that no extra data is being pushed anymore.
:return: None</p>
</dd></dl>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.get_predictions">
<code class="descname">get_predictions</code><span class="sig-paren">(</span><em>states: List[Dict[str, numpy.ndarray]], prediction_type: rl_coach.core_types.PredictionType</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.get_predictions"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.get_predictions" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">get_predictions</code><span class="sig-paren">(</span><em class="sig-param">states: List[Dict[str, numpy.ndarray]], prediction_type: rl_coach.core_types.PredictionType</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.get_predictions"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.get_predictions" title="Permalink to this definition"></a></dt>
<dd><p>Get a prediction from the agent with regard to the requested prediction_type.
If the agent cannot predict this type of prediction_type, or if there is more than possible way to do so,
raise a ValueException.</p>
@@ -367,7 +376,7 @@ raise a ValueException.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.get_state_embedding">
<code class="descname">get_state_embedding</code><span class="sig-paren">(</span><em>state: dict</em><span class="sig-paren">)</span> &#x2192; numpy.ndarray<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.get_state_embedding"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.get_state_embedding" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">get_state_embedding</code><span class="sig-paren">(</span><em class="sig-param">state: dict</em><span class="sig-paren">)</span> &#x2192; numpy.ndarray<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.get_state_embedding"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.get_state_embedding" title="Permalink to this definition"></a></dt>
<dd><p>Given a state, get the corresponding state embedding from the main network</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
@@ -381,7 +390,7 @@ raise a ValueException.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.handle_episode_ended">
<code class="descname">handle_episode_ended</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.handle_episode_ended"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.handle_episode_ended" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">handle_episode_ended</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.handle_episode_ended"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.handle_episode_ended" title="Permalink to this definition"></a></dt>
<dd><p>Make any changes needed when each episode is ended.
This includes incrementing counters, updating full episode dependent values, updating logs, etc.
This function is called right after each episode is ended.</p>
@@ -394,7 +403,7 @@ This function is called right after each episode is ended.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.init_environment_dependent_modules">
<code class="descname">init_environment_dependent_modules</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.init_environment_dependent_modules"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.init_environment_dependent_modules" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">init_environment_dependent_modules</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.init_environment_dependent_modules"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.init_environment_dependent_modules" title="Permalink to this definition"></a></dt>
<dd><p>Initialize any modules that depend on knowing information about the environment such as the action space or
the observation space</p>
<dl class="field-list simple">
@@ -404,9 +413,20 @@ the observation space</p>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.initialize_session_dependent_components">
<code class="sig-name descname">initialize_session_dependent_components</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.initialize_session_dependent_components"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.initialize_session_dependent_components" title="Permalink to this definition"></a></dt>
<dd><p>Initialize components which require a session as part of their initialization.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>None</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.learn_from_batch">
<code class="descname">learn_from_batch</code><span class="sig-paren">(</span><em>batch</em><span class="sig-paren">)</span> &#x2192; Tuple[float, List, List]<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.learn_from_batch"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.learn_from_batch" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">learn_from_batch</code><span class="sig-paren">(</span><em class="sig-param">batch</em><span class="sig-paren">)</span> &#x2192; Tuple[float, List, List]<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.learn_from_batch"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.learn_from_batch" title="Permalink to this definition"></a></dt>
<dd><p>Given a batch of transitions, calculates their target values and updates the network.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
@@ -418,9 +438,20 @@ the observation space</p>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.load_memory_from_file">
<code class="sig-name descname">load_memory_from_file</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.load_memory_from_file"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.load_memory_from_file" title="Permalink to this definition"></a></dt>
<dd><p>Load memory transitions from a file.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>None</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.log_to_screen">
<code class="descname">log_to_screen</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.log_to_screen"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.log_to_screen" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">log_to_screen</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.log_to_screen"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.log_to_screen" title="Permalink to this definition"></a></dt>
<dd><p>Write an episode summary line to the terminal</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -431,7 +462,7 @@ the observation space</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.observe">
<code class="descname">observe</code><span class="sig-paren">(</span><em>env_response: rl_coach.core_types.EnvResponse</em><span class="sig-paren">)</span> &#x2192; bool<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.observe"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.observe" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">observe</code><span class="sig-paren">(</span><em class="sig-param">env_response: rl_coach.core_types.EnvResponse</em><span class="sig-paren">)</span> &#x2192; bool<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.observe"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.observe" title="Permalink to this definition"></a></dt>
<dd><p>Given a response from the environment, distill the observation from it and store it for later use.
The response should be a dictionary containing the performed action, the new observation and measurements,
the reward, a game over flag and any additional information necessary.</p>
@@ -446,9 +477,9 @@ given observation</p>
</dl>
</dd></dl>
<dl class="attribute">
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.parent">
<code class="descname">parent</code><a class="headerlink" href="#rl_coach.agents.agent.Agent.parent" title="Permalink to this definition"></a></dt>
<em class="property">property </em><code class="sig-name descname">parent</code><a class="headerlink" href="#rl_coach.agents.agent.Agent.parent" title="Permalink to this definition"></a></dt>
<dd><p>Get the parent class of the agent</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -457,9 +488,9 @@ given observation</p>
</dl>
</dd></dl>
<dl class="attribute">
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.phase">
<code class="descname">phase</code><a class="headerlink" href="#rl_coach.agents.agent.Agent.phase" title="Permalink to this definition"></a></dt>
<em class="property">property </em><code class="sig-name descname">phase</code><a class="headerlink" href="#rl_coach.agents.agent.Agent.phase" title="Permalink to this definition"></a></dt>
<dd><p>The current running phase of the agent</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -470,7 +501,7 @@ given observation</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.post_training_commands">
<code class="descname">post_training_commands</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.post_training_commands"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.post_training_commands" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">post_training_commands</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.post_training_commands"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.post_training_commands" title="Permalink to this definition"></a></dt>
<dd><p>A function which allows adding any functionality that is required to run right after the training phase ends.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -481,7 +512,7 @@ given observation</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.prepare_batch_for_inference">
<code class="descname">prepare_batch_for_inference</code><span class="sig-paren">(</span><em>states: Union[Dict[str, numpy.ndarray], List[Dict[str, numpy.ndarray]]], network_name: str</em><span class="sig-paren">)</span> &#x2192; Dict[str, numpy.array]<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.prepare_batch_for_inference"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.prepare_batch_for_inference" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">prepare_batch_for_inference</code><span class="sig-paren">(</span><em class="sig-param">states: Union[Dict[str, numpy.ndarray], List[Dict[str, numpy.ndarray]]], network_name: str</em><span class="sig-paren">)</span> &#x2192; Dict[str, numpy.core.multiarray.array]<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.prepare_batch_for_inference"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.prepare_batch_for_inference" title="Permalink to this definition"></a></dt>
<dd><p>Convert curr_state into input tensors tensorflow is expecting. i.e. if we have several inputs states, stack all
observations together, measurements together, etc.</p>
<dl class="field-list simple">
@@ -501,7 +532,7 @@ the observation relevant for the network from the states.</p></li>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.register_signal">
<code class="descname">register_signal</code><span class="sig-paren">(</span><em>signal_name: str</em>, <em>dump_one_value_per_episode: bool = True</em>, <em>dump_one_value_per_step: bool = False</em><span class="sig-paren">)</span> &#x2192; rl_coach.utils.Signal<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.register_signal"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.register_signal" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">register_signal</code><span class="sig-paren">(</span><em class="sig-param">signal_name: str</em>, <em class="sig-param">dump_one_value_per_episode: bool = True</em>, <em class="sig-param">dump_one_value_per_step: bool = False</em><span class="sig-paren">)</span> &#x2192; rl_coach.utils.Signal<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.register_signal"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.register_signal" title="Permalink to this definition"></a></dt>
<dd><p>Register a signal such that its statistics will be dumped and be viewable through dashboard</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
@@ -519,7 +550,7 @@ the observation relevant for the network from the states.</p></li>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.reset_evaluation_state">
<code class="descname">reset_evaluation_state</code><span class="sig-paren">(</span><em>val: rl_coach.core_types.RunPhase</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.reset_evaluation_state"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.reset_evaluation_state" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">reset_evaluation_state</code><span class="sig-paren">(</span><em class="sig-param">val: rl_coach.core_types.RunPhase</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.reset_evaluation_state"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.reset_evaluation_state" title="Permalink to this definition"></a></dt>
<dd><p>Perform accumulators initialization when entering an evaluation phase, and signal dumping when exiting an
evaluation phase. Entering or exiting the evaluation phase is determined according to the new phase given
by val, and by the current phase set in self.phase.</p>
@@ -535,7 +566,7 @@ by val, and by the current phase set in self.phase.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.reset_internal_state">
<code class="descname">reset_internal_state</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.reset_internal_state"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.reset_internal_state" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">reset_internal_state</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.reset_internal_state"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.reset_internal_state" title="Permalink to this definition"></a></dt>
<dd><p>Reset all the episodic parameters. This function is called right before each episode starts.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -546,7 +577,7 @@ by val, and by the current phase set in self.phase.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.restore_checkpoint">
<code class="descname">restore_checkpoint</code><span class="sig-paren">(</span><em>checkpoint_dir: str</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.restore_checkpoint"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.restore_checkpoint" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">restore_checkpoint</code><span class="sig-paren">(</span><em class="sig-param">checkpoint_dir: str</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.restore_checkpoint"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.restore_checkpoint" title="Permalink to this definition"></a></dt>
<dd><p>Allows agents to store additional information when saving checkpoints.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
@@ -560,7 +591,7 @@ by val, and by the current phase set in self.phase.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.run_off_policy_evaluation">
<code class="descname">run_off_policy_evaluation</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="headerlink" href="#rl_coach.agents.agent.Agent.run_off_policy_evaluation" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">run_off_policy_evaluation</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="headerlink" href="#rl_coach.agents.agent.Agent.run_off_policy_evaluation" title="Permalink to this definition"></a></dt>
<dd><p>Run off-policy evaluation estimators to evaluate the trained policy performance against a dataset.
Should only be implemented for off-policy RL algorithms.</p>
<dl class="field-list simple">
@@ -572,7 +603,7 @@ Should only be implemented for off-policy RL algorithms.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.run_pre_network_filter_for_inference">
<code class="descname">run_pre_network_filter_for_inference</code><span class="sig-paren">(</span><em>state: Dict[str, numpy.ndarray], update_filter_internal_state: bool = True</em><span class="sig-paren">)</span> &#x2192; Dict[str, numpy.ndarray]<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.run_pre_network_filter_for_inference"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.run_pre_network_filter_for_inference" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">run_pre_network_filter_for_inference</code><span class="sig-paren">(</span><em class="sig-param">state: Dict[str, numpy.ndarray], update_filter_internal_state: bool = True</em><span class="sig-paren">)</span> &#x2192; Dict[str, numpy.ndarray]<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.run_pre_network_filter_for_inference"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.run_pre_network_filter_for_inference" title="Permalink to this definition"></a></dt>
<dd><p>Run filters which where defined for being applied right before using the state for inference.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
@@ -589,7 +620,7 @@ Should only be implemented for off-policy RL algorithms.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.save_checkpoint">
<code class="descname">save_checkpoint</code><span class="sig-paren">(</span><em>checkpoint_prefix: str</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.save_checkpoint"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.save_checkpoint" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">save_checkpoint</code><span class="sig-paren">(</span><em class="sig-param">checkpoint_prefix: str</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.save_checkpoint"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.save_checkpoint" title="Permalink to this definition"></a></dt>
<dd><p>Allows agents to store additional information when saving checkpoints.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
@@ -603,7 +634,7 @@ Should only be implemented for off-policy RL algorithms.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.set_environment_parameters">
<code class="descname">set_environment_parameters</code><span class="sig-paren">(</span><em>spaces: rl_coach.spaces.SpacesDefinition</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.set_environment_parameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.set_environment_parameters" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">set_environment_parameters</code><span class="sig-paren">(</span><em class="sig-param">spaces: rl_coach.spaces.SpacesDefinition</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.set_environment_parameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.set_environment_parameters" title="Permalink to this definition"></a></dt>
<dd><p>Sets the parameters that are environment dependent. As a side effect, initializes all the components that are
dependent on those values, by calling init_environment_dependent_modules</p>
<dl class="field-list simple">
@@ -618,7 +649,7 @@ dependent on those values, by calling init_environment_dependent_modules</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.set_incoming_directive">
<code class="descname">set_incoming_directive</code><span class="sig-paren">(</span><em>action: Union[int, float, numpy.ndarray, List]</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.set_incoming_directive"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.set_incoming_directive" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">set_incoming_directive</code><span class="sig-paren">(</span><em class="sig-param">action: Union[int, float, numpy.ndarray, List]</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.set_incoming_directive"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.set_incoming_directive" title="Permalink to this definition"></a></dt>
<dd><p>Allows setting a directive for the agent to follow. This is useful in hierarchy structures, where the agent
has another master agent that is controlling it. In such cases, the master agent can define the goals for the
slave agent, define its observation, possible actions, etc. The directive type is defined by the agent
@@ -635,7 +666,7 @@ in-action-space.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.set_session">
<code class="descname">set_session</code><span class="sig-paren">(</span><em>sess</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.set_session"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.set_session" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">set_session</code><span class="sig-paren">(</span><em class="sig-param">sess</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.set_session"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.set_session" title="Permalink to this definition"></a></dt>
<dd><p>Set the deep learning framework session for all the agents in the composite agent</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -646,7 +677,7 @@ in-action-space.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.setup_logger">
<code class="descname">setup_logger</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.setup_logger"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.setup_logger" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">setup_logger</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.setup_logger"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.setup_logger" title="Permalink to this definition"></a></dt>
<dd><p>Setup the logger for the agent</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -657,7 +688,7 @@ in-action-space.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.sync">
<code class="descname">sync</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.sync"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.sync" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">sync</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.sync"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.sync" title="Permalink to this definition"></a></dt>
<dd><p>Sync the global network parameters to local networks</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -668,7 +699,7 @@ in-action-space.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.train">
<code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; float<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.train" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; float<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.train" title="Permalink to this definition"></a></dt>
<dd><p>Check if a training phase should be done as configured by num_consecutive_playing_steps.
If it should, then do several training steps as configured by num_consecutive_training_steps.
A single training iteration: Sample a batch, train on it and update target networks.</p>
@@ -681,7 +712,7 @@ A single training iteration: Sample a batch, train on it and update target netwo
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.update_log">
<code class="descname">update_log</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.update_log"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.update_log" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">update_log</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.update_log"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.update_log" title="Permalink to this definition"></a></dt>
<dd><p>Updates the episodic log file with all the signal values from the most recent episode.
Additional signals for logging can be set by the creating a new signal using self.register_signal,
and then updating it with some internal agent values.</p>
@@ -694,7 +725,7 @@ and then updating it with some internal agent values.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.update_step_in_episode_log">
<code class="descname">update_step_in_episode_log</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.update_step_in_episode_log"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.update_step_in_episode_log" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">update_step_in_episode_log</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.update_step_in_episode_log"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.update_step_in_episode_log" title="Permalink to this definition"></a></dt>
<dd><p>Updates the in-episode log file with all the signal values from the most recent step.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
@@ -705,7 +736,7 @@ and then updating it with some internal agent values.</p>
<dl class="method">
<dt id="rl_coach.agents.agent.Agent.update_transition_before_adding_to_replay_buffer">
<code class="descname">update_transition_before_adding_to_replay_buffer</code><span class="sig-paren">(</span><em>transition: rl_coach.core_types.Transition</em><span class="sig-paren">)</span> &#x2192; rl_coach.core_types.Transition<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.update_transition_before_adding_to_replay_buffer"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.update_transition_before_adding_to_replay_buffer" title="Permalink to this definition"></a></dt>
<code class="sig-name descname">update_transition_before_adding_to_replay_buffer</code><span class="sig-paren">(</span><em class="sig-param">transition: rl_coach.core_types.Transition</em><span class="sig-paren">)</span> &#x2192; rl_coach.core_types.Transition<a class="reference internal" href="../../_modules/rl_coach/agents/agent.html#Agent.update_transition_before_adding_to_replay_buffer"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.agent.Agent.update_transition_before_adding_to_replay_buffer" title="Permalink to this definition"></a></dt>
<dd><p>Allows agents to update the transition just before adding it to the replay buffer.
Can be useful for agents that want to tweak the reward, termination signal, etc.</p>
<dl class="field-list simple">

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Direct Future Prediction</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
@@ -249,7 +250,7 @@ measurements that were seen in time-steps <span class="math notranslate nohighli
For the actions that were not taken, the targets are the current values.</p>
<dl class="class">
<dt id="rl_coach.agents.dfp_agent.DFPAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.dfp_agent.</code><code class="descname">DFPAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/dfp_agent.html#DFPAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.dfp_agent.DFPAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.dfp_agent.</code><code class="sig-name descname">DFPAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/dfp_agent.html#DFPAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.dfp_agent.DFPAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -125,6 +125,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
@@ -247,7 +248,7 @@ where <span class="math notranslate nohighlight">\(k\)</span> is <span class="ma
<span class="math notranslate nohighlight">\(L = -\mathop{\mathbb{E}} [log (\pi) \cdot A]\)</span></p>
<dl class="class">
<dt id="rl_coach.agents.actor_critic_agent.ActorCriticAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.actor_critic_agent.</code><code class="descname">ActorCriticAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/actor_critic_agent.html#ActorCriticAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.actor_critic_agent.ActorCriticAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.actor_critic_agent.</code><code class="sig-name descname">ActorCriticAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/actor_critic_agent.html#ActorCriticAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.actor_critic_agent.ActorCriticAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -125,6 +125,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
@@ -279,7 +280,7 @@ The goal of the trust region update is to the difference between the updated pol
</ol>
<dl class="class">
<dt id="rl_coach.agents.acer_agent.ACERAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.acer_agent.</code><code class="descname">ACERAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/acer_agent.html#ACERAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.acer_agent.ACERAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.acer_agent.</code><code class="sig-name descname">ACERAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/acer_agent.html#ACERAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.acer_agent.ACERAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -125,6 +125,7 @@
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
@@ -252,7 +253,7 @@ clipped surrogate loss:</p>
</ol>
<dl class="class">
<dt id="rl_coach.agents.clipped_ppo_agent.ClippedPPOAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.clipped_ppo_agent.</code><code class="descname">ClippedPPOAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/clipped_ppo_agent.html#ClippedPPOAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.clipped_ppo_agent.ClippedPPOAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.clipped_ppo_agent.</code><code class="sig-name descname">ClippedPPOAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/clipped_ppo_agent.html#ClippedPPOAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.clipped_ppo_agent.ClippedPPOAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -37,7 +37,7 @@
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<link rel="next" title="Soft Actor-Critic" href="sac.html" />
<link rel="next" title="Twin Delayed Deep Deterministic Policy Gradient" href="td3.html" />
<link rel="prev" title="Clipped Proximal Policy Optimization" href="cppo.html" />
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
@@ -125,6 +125,7 @@
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
@@ -257,7 +258,7 @@ given <span class="math notranslate nohighlight">\(\nabla_a Q(s,a)\)</span>. Fin
<p>After every training step, do a soft update of the critic and actor target networks weights from the online networks.</p>
<dl class="class">
<dt id="rl_coach.agents.ddpg_agent.DDPGAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.ddpg_agent.</code><code class="descname">DDPGAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/ddpg_agent.html#DDPGAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.ddpg_agent.DDPGAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.ddpg_agent.</code><code class="sig-name descname">DDPGAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/ddpg_agent.html#DDPGAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.ddpg_agent.DDPGAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
@@ -297,7 +298,7 @@ values. If set to False, the terminal states reward will be taken as the target
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="sac.html" class="btn btn-neutral float-right" title="Soft Actor-Critic" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="td3.html" class="btn btn-neutral float-right" title="Twin Delayed Deep Deterministic Policy Gradient" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="cppo.html" class="btn btn-neutral float-left" title="Clipped Proximal Policy Optimization" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
@@ -251,7 +252,7 @@ serves the same purpose - reducing the update variance. After accumulating gradi
the gradients are then applied to the network.</p>
<dl class="class">
<dt id="rl_coach.agents.policy_gradients_agent.PolicyGradientAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.policy_gradients_agent.</code><code class="descname">PolicyGradientAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/policy_gradients_agent.html#PolicyGradientAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.policy_gradients_agent.PolicyGradientAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.policy_gradients_agent.</code><code class="sig-name descname">PolicyGradientAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/policy_gradients_agent.html#PolicyGradientAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.policy_gradients_agent.PolicyGradientAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
@@ -253,7 +254,7 @@ increase the penalty, if it went too low, reduce it. Otherwise, leave it unchang
</ol>
<dl class="class">
<dt id="rl_coach.agents.ppo_agent.PPOAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.ppo_agent.</code><code class="descname">PPOAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/ppo_agent.html#PPOAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.ppo_agent.PPOAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.ppo_agent.</code><code class="sig-name descname">PPOAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/ppo_agent.html#PPOAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.ppo_agent.PPOAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -38,7 +38,7 @@
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<link rel="next" title="Direct Future Prediction" href="../other/dfp.html" />
<link rel="prev" title="Deep Deterministic Policy Gradient" href="ddpg.html" />
<link rel="prev" title="Twin Delayed Deep Deterministic Policy Gradient" href="td3.html" />
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
</head>
@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Soft Actor-Critic</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
<li class="toctree-l3"><a class="reference internal" href="#algorithm-description">Algorithm Description</a><ul>
@@ -258,7 +259,7 @@ from the current policy.</p>
<p>After every training step, do a soft update of the V target networks weights from the online networks.</p>
<dl class="class">
<dt id="rl_coach.agents.soft_actor_critic_agent.SoftActorCriticAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.soft_actor_critic_agent.</code><code class="descname">SoftActorCriticAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/soft_actor_critic_agent.html#SoftActorCriticAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.soft_actor_critic_agent.SoftActorCriticAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.soft_actor_critic_agent.</code><code class="sig-name descname">SoftActorCriticAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/soft_actor_critic_agent.html#SoftActorCriticAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.soft_actor_critic_agent.SoftActorCriticAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
@@ -290,7 +291,7 @@ and not sampled from the policy distribution.</p></li>
<a href="../other/dfp.html" class="btn btn-neutral float-right" title="Direct Future Prediction" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="ddpg.html" class="btn btn-neutral float-left" title="Deep Deterministic Policy Gradient" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
<a href="td3.html" class="btn btn-neutral float-left" title="Twin Delayed Deep Deterministic Policy Gradient" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>

View File

@@ -0,0 +1,347 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Twin Delayed Deep Deterministic Policy Gradient &mdash; Reinforcement Learning Coach 0.12.0 documentation</title>
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<link rel="next" title="Soft Actor-Critic" href="sac.html" />
<link rel="prev" title="Deep Deterministic Policy Gradient" href="ddpg.html" />
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Intro</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../dist_usage.html">Usage - Distributed Coach</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
</ul>
<p class="caption"><span class="caption-text">Design</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../design/horizontal_scaling.html">Distributed Coach - Horizontal Scale-Out</a></li>
</ul>
<p class="caption"><span class="caption-text">Contributing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
</ul>
<p class="caption"><span class="caption-text">Components</span></p>
<ul class="current">
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="ac.html">Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="acer.html">ACER</a></li>
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/bs_dqn.html">Bootstrapped DQN</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/categorical_dqn.html">Categorical DQN</a></li>
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Twin Delayed Deep Deterministic Policy Gradient</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
<li class="toctree-l3"><a class="reference internal" href="#algorithm-description">Algorithm Description</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#choosing-an-action">Choosing an action</a></li>
<li class="toctree-l4"><a class="reference internal" href="#training-the-network">Training the network</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dqn.html">Deep Q Networks</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dueling_dqn.html">Dueling DQN</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/mmc.html">Mixed Monte Carlo</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/n_step.html">N-Step Q Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/naf.html">Normalized Advantage Functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/nec.html">Neural Episodic Control</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/pal.html">Persistent Advantage Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="pg.html">Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="ppo.html">Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/rainbow.html">Rainbow</a></li>
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/qr_dqn.html">Quantile Regression DQN</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../architectures/index.html">Architectures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../data_stores/index.html">Data Stores</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../environments/index.html">Environments</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../exploration_policies/index.html">Exploration Policies</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../filters/index.html">Filters</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../memories/index.html">Memories</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../memory_backends/index.html">Memory Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../orchestrators/index.html">Orchestrators</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../core_types.html">Core Types</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../spaces.html">Spaces</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../additional_parameters.html">Additional Parameters</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">Reinforcement Learning Coach</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html">Docs</a> &raquo;</li>
<li><a href="../index.html">Agents</a> &raquo;</li>
<li>Twin Delayed Deep Deterministic Policy Gradient</li>
<li class="wy-breadcrumbs-aside">
<a href="../../../_sources/components/agents/policy_optimization/td3.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="twin-delayed-deep-deterministic-policy-gradient">
<h1>Twin Delayed Deep Deterministic Policy Gradient<a class="headerlink" href="#twin-delayed-deep-deterministic-policy-gradient" title="Permalink to this headline"></a></h1>
<p><strong>Actions space:</strong> Continuous</p>
<p><strong>References:</strong> <a class="reference external" href="https://arxiv.org/pdf/1802.09477">Addressing Function Approximation Error in Actor-Critic Methods</a></p>
<div class="section" id="network-structure">
<h2>Network Structure<a class="headerlink" href="#network-structure" title="Permalink to this headline"></a></h2>
<img alt="../../../_images/td3.png" class="align-center" src="../../../_images/td3.png" />
</div>
<div class="section" id="algorithm-description">
<h2>Algorithm Description<a class="headerlink" href="#algorithm-description" title="Permalink to this headline"></a></h2>
<div class="section" id="choosing-an-action">
<h3>Choosing an action<a class="headerlink" href="#choosing-an-action" title="Permalink to this headline"></a></h3>
<p>Pass the current states through the actor network, and get an action mean vector <span class="math notranslate nohighlight">\(\mu\)</span>.
While in training phase, use a continuous exploration policy, such as a small zero-meaned gaussian noise,
to add exploration noise to the action. When testing, use the mean vector <span class="math notranslate nohighlight">\(\mu\)</span> as-is.</p>
</div>
<div class="section" id="training-the-network">
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline"></a></h3>
<p>Start by sampling a batch of transitions from the experience replay.</p>
<ul>
<li><p>To train the two <strong>critic networks</strong>, use the following targets:</p>
<p><span class="math notranslate nohighlight">\(y_t=r(s_t,a_t )+\gamma \cdot \min_{i=1,2} Q_{i}(s_{t+1},\mu(s_{t+1} )+[\mathcal{N}(0,\,\sigma^{2})]^{MAX\_NOISE}_{MIN\_NOISE})\)</span></p>
<p>First run the actor target network, using the next states as the inputs, and get <span class="math notranslate nohighlight">\(\mu (s_{t+1} )\)</span>. Then, add a
clipped gaussian noise to these actions, and clip the resulting actions to the actions space.
Next, run the critic target networks using the next states and <span class="math notranslate nohighlight">\(\mu (s_{t+1} )+[\mathcal{N}(0,\,\sigma^{2})]^{MAX\_NOISE}_{MIN\_NOISE}\)</span>,
and use the minimum between the two critic networks predictions in order to calculate <span class="math notranslate nohighlight">\(y_t\)</span> according to the
equation above. To train the networks, use the current states and actions as the inputs, and <span class="math notranslate nohighlight">\(y_t\)</span>
as the targets.</p>
</li>
<li><p>To train the <strong>actor network</strong>, use the following equation:</p>
<p><span class="math notranslate nohighlight">\(\nabla_{\theta^\mu } J \approx E_{s_t \tilde{} \rho^\beta } [\nabla_a Q_{1}(s,a)|_{s=s_t,a=\mu (s_t ) } \cdot \nabla_{\theta^\mu} \mu(s)|_{s=s_t} ]\)</span></p>
<p>Use the actors online network to get the action mean values using the current states as the inputs.
Then, use the first critics online network in order to get the gradients of the critic output with respect to the
action mean values <span class="math notranslate nohighlight">\(\nabla _a Q_{1}(s,a)|_{s=s_t,a=\mu(s_t ) }\)</span>.
Using the chain rule, calculate the gradients of the actors output, with respect to the actor weights,
given <span class="math notranslate nohighlight">\(\nabla_a Q(s,a)\)</span>. Finally, apply those gradients to the actor network.</p>
<p>The actors training is done at a slower frequency than the critics training, in order to allow the critic to better fit the
current policy, before exercising the critic in order to train the actor.
Following the same, delayed, actors training cadence, do a soft update of the critic and actor target networks weights
from the online networks.</p>
</li>
</ul>
<dl class="class">
<dt id="rl_coach.agents.td3_agent.TD3AlgorithmParameters">
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.td3_agent.</code><code class="sig-name descname">TD3AlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/td3_agent.html#TD3AlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.td3_agent.TD3AlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>num_steps_between_copying_online_weights_to_target</strong> (StepMethod)
The number of steps between copying the online network weights to the target network weights.</p></li>
<li><p><strong>rate_for_copying_weights_to_target</strong> (float)
When copying the online network weights to the target network weights, a soft update will be used, which
weight the new online network weights by rate_for_copying_weights_to_target</p></li>
<li><p><strong>num_consecutive_playing_steps</strong> (StepMethod)
The number of consecutive steps to act between every two training iterations</p></li>
<li><p><strong>use_target_network_for_evaluation</strong> (bool)
If set to True, the target network will be used for predicting the actions when choosing actions to act.
Since the target network weights change more slowly, the predicted actions will be more consistent.</p></li>
<li><p><strong>action_penalty</strong> (float)
The amount by which to penalize the network on high action feature (pre-activation) values.
This can prevent the actions features from saturating the TanH activation function, and therefore prevent the
gradients from becoming very low.</p></li>
<li><p><strong>clip_critic_targets</strong> (Tuple[float, float] or None)
The range to clip the critic target to in order to prevent overestimation of the action values.</p></li>
<li><p><strong>use_non_zero_discount_for_terminal_states</strong> (bool)
If set to True, the discount factor will be used for terminal states to bootstrap the next predicted state
values. If set to False, the terminal states reward will be taken as the target return for the network.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</div>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="sac.html" class="btn btn-neutral float-right" title="Soft Actor-Critic" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="ddpg.html" class="btn btn-neutral float-left" title="Deep Deterministic Policy Gradient" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2018-2019, Intel AI Lab
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>

View File

@@ -126,6 +126,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>

View File

@@ -124,6 +124,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -244,7 +245,7 @@ probability distribution. Only the target of the actions that were actually ta
</ol>
<dl class="class">
<dt id="rl_coach.agents.categorical_dqn_agent.CategoricalDQNAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.categorical_dqn_agent.</code><code class="descname">CategoricalDQNAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/categorical_dqn_agent.html#CategoricalDQNAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.categorical_dqn_agent.CategoricalDQNAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.categorical_dqn_agent.</code><code class="sig-name descname">CategoricalDQNAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/categorical_dqn_agent.html#CategoricalDQNAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.categorical_dqn_agent.CategoricalDQNAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Double DQN</a><ul>

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -243,7 +244,7 @@ Set those values as the targets for the actions that were not actually played.</
</ol>
<dl class="class">
<dt id="rl_coach.agents.dqn_agent.DQNAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.dqn_agent.</code><code class="descname">DQNAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/dqn_agent.html#DQNAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.dqn_agent.DQNAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.dqn_agent.</code><code class="sig-name descname">DQNAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/dqn_agent.html#DQNAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.dqn_agent.DQNAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -240,7 +241,7 @@
Once in every few thousand steps, copy the weights from the online network to the target network.</p>
<dl class="class">
<dt id="rl_coach.agents.mmc_agent.MixedMonteCarloAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.mmc_agent.</code><code class="descname">MixedMonteCarloAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/mmc_agent.html#MixedMonteCarloAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.mmc_agent.MixedMonteCarloAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.mmc_agent.</code><code class="sig-name descname">MixedMonteCarloAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/mmc_agent.html#MixedMonteCarloAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.mmc_agent.MixedMonteCarloAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>monte_carlo_mixing_rate</strong> (float)

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -242,7 +243,7 @@ where <span class="math notranslate nohighlight">\(k\)</span> is <span class="ma
</ol>
<dl class="class">
<dt id="rl_coach.agents.n_step_q_agent.NStepQAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.n_step_q_agent.</code><code class="descname">NStepQAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/n_step_q_agent.html#NStepQAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.n_step_q_agent.NStepQAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.n_step_q_agent.</code><code class="sig-name descname">NStepQAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/n_step_q_agent.html#NStepQAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.n_step_q_agent.NStepQAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -243,7 +244,7 @@ and <span class="math notranslate nohighlight">\(y_t\)</span> as the targets.
After every training step, use a soft update in order to copy the weights from the online network to the target network.</p>
<dl class="class">
<dt id="rl_coach.agents.naf_agent.NAFAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.naf_agent.</code><code class="descname">NAFAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/naf_agent.html#NAFAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.naf_agent.NAFAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.naf_agent.</code><code class="sig-name descname">NAFAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/naf_agent.html#NAFAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.naf_agent.NAFAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -258,7 +259,7 @@ the network if necessary:
<span class="math notranslate nohighlight">\(y_t=\sum_{j=0}^{N-1}\gamma^j r(s_{t+j},a_{t+j} ) +\gamma^N max_a Q(s_{t+N},a)\)</span></p>
<dl class="class">
<dt id="rl_coach.agents.nec_agent.NECAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.nec_agent.</code><code class="descname">NECAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/nec_agent.html#NECAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.nec_agent.NECAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.nec_agent.</code><code class="sig-name descname">NECAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/nec_agent.html#NECAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.nec_agent.NECAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -251,7 +252,7 @@ has the highest predicted <span class="math notranslate nohighlight">\(Q\)</span
</ol>
<dl class="class">
<dt id="rl_coach.agents.pal_agent.PALAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.pal_agent.</code><code class="descname">PALAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/pal_agent.html#PALAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.pal_agent.PALAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.pal_agent.</code><code class="sig-name descname">PALAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/pal_agent.html#PALAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.pal_agent.PALAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -241,7 +242,7 @@ quantile locations. Only the targets of the actions that were actually taken are
</ol>
<dl class="class">
<dt id="rl_coach.agents.qr_dqn_agent.QuantileRegressionDQNAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.qr_dqn_agent.</code><code class="descname">QuantileRegressionDQNAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/qr_dqn_agent.html#QuantileRegressionDQNAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.qr_dqn_agent.QuantileRegressionDQNAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.qr_dqn_agent.</code><code class="sig-name descname">QuantileRegressionDQNAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/qr_dqn_agent.html#QuantileRegressionDQNAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.qr_dqn_agent.QuantileRegressionDQNAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">

View File

@@ -117,6 +117,7 @@
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/td3.html">Twin Delayed Deep Deterministic Policy Gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
<li class="toctree-l2"><a class="reference internal" href="../other/dfp.html">Direct Future Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="double_dqn.html">Double DQN</a></li>
@@ -256,7 +257,7 @@ using the KL divergence loss that is returned from the network.</p></li>
</ol>
<dl class="class">
<dt id="rl_coach.agents.rainbow_dqn_agent.RainbowDQNAlgorithmParameters">
<em class="property">class </em><code class="descclassname">rl_coach.agents.rainbow_dqn_agent.</code><code class="descname">RainbowDQNAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/rainbow_dqn_agent.html#RainbowDQNAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.rainbow_dqn_agent.RainbowDQNAlgorithmParameters" title="Permalink to this definition"></a></dt>
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.agents.rainbow_dqn_agent.</code><code class="sig-name descname">RainbowDQNAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/rainbow_dqn_agent.html#RainbowDQNAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.rainbow_dqn_agent.RainbowDQNAlgorithmParameters" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">