1
0
mirror of https://github.com/gryf/coach.git synced 2026-02-16 05:55:46 +01:00
This commit is contained in:
Gal Leibovich
2019-06-16 11:11:21 +03:00
committed by GitHub
parent 8df3c46756
commit 7eb884c5b2
107 changed files with 2200 additions and 495 deletions

View File

@@ -203,7 +203,6 @@ class TensorFlowArchitecture(Architecture):
self._create_gradient_accumulators()
# gradients of the outputs w.r.t. the inputs
# at the moment, this is only used by ddpg
self.gradients_wrt_inputs = [{name: tf.gradients(output, input_ph) for name, input_ph in
self.inputs.items()} for output in self.outputs]
self.gradients_weights_ph = [tf.placeholder('float32', self.outputs[i].shape, 'output_gradient_weights')

View File

@@ -16,6 +16,7 @@ from .sac_head import SACPolicyHead
from .sac_q_head import SACQHead
from .classification_head import ClassificationHead
from .cil_head import RegressionHead
from .td3_v_head import TD3VHead
from .ddpg_v_head import DDPGVHead
__all__ = [
@@ -37,5 +38,6 @@ __all__ = [
'SACQHead',
'ClassificationHead',
'RegressionHead',
'TD3VHead'
'DDPGVHead'
]

View File

@@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Type
import numpy as np
import tensorflow as tf
@@ -22,7 +21,7 @@ from rl_coach.architectures.tensorflow_components.layers import Dense, convert_l
from rl_coach.base_parameters import AgentParameters
from rl_coach.spaces import SpacesDefinition
from rl_coach.utils import force_list
from rl_coach.architectures.tensorflow_components.utils import squeeze_tensor
# Used to initialize weights for policy and value output layers
def normalized_columns_initializer(std=1.0):
@@ -72,8 +71,9 @@ class Head(object):
:param input_layer: the input to the graph
:return: the output of the last layer and the target placeholder
"""
with tf.variable_scope(self.get_name(), initializer=tf.contrib.layers.xavier_initializer()):
self._build_module(input_layer)
self._build_module(squeeze_tensor(input_layer))
self.output = force_list(self.output)
self.target = force_list(self.target)

View File

@@ -0,0 +1,67 @@
#
# Copyright (c) 2019 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.layers import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head, normalized_columns_initializer
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import VStateValue
from rl_coach.spaces import SpacesDefinition
class TD3VHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense, initializer='xavier'):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'td3_v_values_head'
self.return_type = VStateValue
self.loss_type = []
self.initializer = initializer
self.loss = []
self.output = []
def _build_module(self, input_layer):
# Standard V Network
q_outputs = []
self.target = tf.placeholder(tf.float32, shape=(None, 1), name="q_networks_min_placeholder")
for i in range(input_layer.shape[0]): # assuming that the actual size is 2, as there are two critic networks
if self.initializer == 'normalized_columns':
q_outputs.append(self.dense_layer(1)(input_layer[i], name='q_output_{}'.format(i + 1),
kernel_initializer=normalized_columns_initializer(1.0)))
elif self.initializer == 'xavier' or self.initializer is None:
q_outputs.append(self.dense_layer(1)(input_layer[i], name='q_output_{}'.format(i + 1)))
self.output.append(q_outputs[i])
self.loss.append(tf.reduce_mean((self.target-q_outputs[i])**2))
self.output.append(tf.reduce_min(q_outputs, axis=0))
self.output.append(tf.reduce_mean(self.output[0]))
self.loss = sum(self.loss)
tf.losses.add_loss(self.loss)
def __str__(self):
result = [
"Q1 Action-Value Stream",
"\tDense (num outputs = 1)",
"Q2 Action-Value Stream",
"\tDense (num outputs = 1)",
"Min (Q1, Q2)"
]
return '\n'.join(result)

View File

@@ -28,23 +28,28 @@ class FCMiddleware(Middleware):
def __init__(self, activation_function=tf.nn.relu,
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
batchnorm: bool = False, dropout_rate: float = 0.0,
name="middleware_fc_embedder", dense_layer=Dense, is_training=False):
name="middleware_fc_embedder", dense_layer=Dense, is_training=False, num_streams: int = 1):
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
dropout_rate=dropout_rate, scheme=scheme, name=name, dense_layer=dense_layer,
is_training=is_training)
self.return_type = Middleware_FC_Embedding
self.layers = []
assert(isinstance(num_streams, int) and num_streams >= 1)
self.num_streams = num_streams
def _build_module(self):
self.layers.append(self.input)
self.output = []
for idx, layer_params in enumerate(self.layers_params):
self.layers.extend(force_list(
layer_params(self.layers[-1], name='{}_{}'.format(layer_params.__class__.__name__, idx),
is_training=self.is_training)
))
for stream_idx in range(self.num_streams):
layers = [self.input]
self.output = self.layers[-1]
for idx, layer_params in enumerate(self.layers_params):
layers.extend(force_list(
layer_params(layers[-1], name='{}_{}'.format(layer_params.__class__.__name__,
idx + stream_idx * len(self.layers_params)),
is_training=self.is_training)
))
self.output.append((layers[-1]))
@property
def schemes(self):
@@ -72,3 +77,15 @@ class FCMiddleware(Middleware):
]
}
def __str__(self):
stream = [str(l) for l in self.layers_params]
if self.layers_params:
if self.num_streams > 1:
stream = [''] + ['\t' + l for l in stream]
result = stream * self.num_streams
result[0::len(stream)] = ['Stream {}'.format(i) for i in range(self.num_streams)]
else:
result = stream
return '\n'.join(result)
else:
return 'No layers'

View File

@@ -38,3 +38,10 @@ def get_activation_function(activation_function_string: str):
"Activation function must be one of the following {}. instead it was: {}" \
.format(activation_functions.keys(), activation_function_string)
return activation_functions[activation_function_string]
def squeeze_tensor(tensor):
if tensor.shape[0] == 1:
return tensor[0]
else:
return tensor