mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
TD3 (#338)
This commit is contained in:
@@ -28,10 +28,11 @@ from rl_coach.spaces import ActionSpace, BoxActionSpace
|
||||
class TruncatedNormalParameters(ExplorationParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.noise_percentage_schedule = LinearSchedule(0.1, 0.1, 50000)
|
||||
self.evaluation_noise_percentage = 0.05
|
||||
self.noise_schedule = LinearSchedule(0.1, 0.1, 50000)
|
||||
self.evaluation_noise = 0.05
|
||||
self.clip_low = 0
|
||||
self.clip_high = 1
|
||||
self.noise_as_percentage_from_action_space = True
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
@@ -49,17 +50,20 @@ class TruncatedNormal(ContinuousActionExplorationPolicy):
|
||||
When the sampled action is outside of the action bounds given by the user, it is sampled again and again, until it
|
||||
is within the bounds.
|
||||
"""
|
||||
def __init__(self, action_space: ActionSpace, noise_percentage_schedule: Schedule,
|
||||
evaluation_noise_percentage: float, clip_low: float, clip_high: float):
|
||||
def __init__(self, action_space: ActionSpace, noise_schedule: Schedule,
|
||||
evaluation_noise: float, clip_low: float, clip_high: float,
|
||||
noise_as_percentage_from_action_space: bool = True):
|
||||
"""
|
||||
:param action_space: the action space used by the environment
|
||||
:param noise_percentage_schedule: the schedule for the noise variance percentage relative to the absolute range
|
||||
of the action space
|
||||
:param evaluation_noise_percentage: the noise variance percentage that will be used during evaluation phases
|
||||
:param noise_schedule: the schedule for the noise variance
|
||||
:param evaluation_noise: the noise variance that will be used during evaluation phases
|
||||
:param noise_as_percentage_from_action_space: whether to consider the noise as a percentage of the action space
|
||||
or absolute value
|
||||
"""
|
||||
super().__init__(action_space)
|
||||
self.noise_percentage_schedule = noise_percentage_schedule
|
||||
self.evaluation_noise_percentage = evaluation_noise_percentage
|
||||
self.noise_schedule = noise_schedule
|
||||
self.evaluation_noise = evaluation_noise
|
||||
self.noise_as_percentage_from_action_space = noise_as_percentage_from_action_space
|
||||
self.clip_low = clip_low
|
||||
self.clip_high = clip_high
|
||||
|
||||
@@ -71,17 +75,21 @@ class TruncatedNormal(ContinuousActionExplorationPolicy):
|
||||
or not np.all(-np.inf < action_space.low) or not np.all(action_space.low < np.inf):
|
||||
raise ValueError("Additive noise exploration requires bounded actions")
|
||||
|
||||
# TODO: allow working with unbounded actions by defining the noise in terms of range and not percentage
|
||||
|
||||
def get_action(self, action_values: List[ActionType]) -> ActionType:
|
||||
# set the current noise percentage
|
||||
# set the current noise
|
||||
if self.phase == RunPhase.TEST:
|
||||
current_noise_precentage = self.evaluation_noise_percentage
|
||||
current_noise = self.evaluation_noise
|
||||
else:
|
||||
current_noise_precentage = self.noise_percentage_schedule.current_value
|
||||
current_noise = self.noise_schedule.current_value
|
||||
|
||||
# scale the noise to the action space range
|
||||
action_values_std = current_noise_precentage * (self.action_space.high - self.action_space.low)
|
||||
if self.noise_as_percentage_from_action_space:
|
||||
action_values_std = current_noise * (self.action_space.high - self.action_space.low)
|
||||
else:
|
||||
action_values_std = current_noise
|
||||
|
||||
# scale the noise to the action space range
|
||||
action_values_std = current_noise * (self.action_space.high - self.action_space.low)
|
||||
|
||||
# extract the mean values
|
||||
if isinstance(action_values, list):
|
||||
@@ -93,7 +101,7 @@ class TruncatedNormal(ContinuousActionExplorationPolicy):
|
||||
|
||||
# step the noise schedule
|
||||
if self.phase is not RunPhase.TEST:
|
||||
self.noise_percentage_schedule.step()
|
||||
self.noise_schedule.step()
|
||||
# the second element of the list is assumed to be the standard deviation
|
||||
if isinstance(action_values, list) and len(action_values) > 1:
|
||||
action_values_std = action_values[1].squeeze()
|
||||
@@ -107,4 +115,4 @@ class TruncatedNormal(ContinuousActionExplorationPolicy):
|
||||
return action
|
||||
|
||||
def get_control_param(self):
|
||||
return np.ones(self.action_space.shape)*self.noise_percentage_schedule.current_value
|
||||
return np.ones(self.action_space.shape)*self.noise_schedule.current_value
|
||||
|
||||
Reference in New Issue
Block a user