1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

fix more agents

This commit is contained in:
Zach Dwiel
2018-02-16 20:06:51 -05:00
parent 98f57a0d87
commit 8248caf35e
6 changed files with 52 additions and 42 deletions

View File

@@ -26,7 +26,7 @@ class PPOAgent(ActorCriticAgent):
self.critic_network = self.main_network
# define the policy network
tuning_parameters.agent.input_types = [InputTypes.Observation]
tuning_parameters.agent.input_types = {'observation': InputTypes.Observation}
tuning_parameters.agent.output_types = [OutputTypes.PPO]
tuning_parameters.agent.optimizer_type = 'Adam'
tuning_parameters.agent.l2_regularization = 0
@@ -53,7 +53,7 @@ class PPOAgent(ActorCriticAgent):
# * Found not to have any impact *
# current_states_with_timestep = self.concat_state_and_timestep(batch)
current_state_values = self.critic_network.online_network.predict(current_state).squeeze()
current_state_values = self.critic_network.online_network.predict(current_states).squeeze()
# calculate advantages
advantages = []
@@ -102,7 +102,10 @@ class PPOAgent(ActorCriticAgent):
batch_size = self.tp.batch_size
for i in range(len(dataset) // batch_size):
# split to batches for first order optimization techniques
current_states_batch = current_states[i * batch_size:(i + 1) * batch_size]
current_states_batch = {
k: v[i * batch_size:(i + 1) * batch_size]
for k, v in current_states.items()
}
total_return_batch = total_return[i * batch_size:(i + 1) * batch_size]
old_policy_values = force_list(self.critic_network.target_network.predict(
current_states_batch).squeeze())
@@ -114,10 +117,11 @@ class PPOAgent(ActorCriticAgent):
inputs = copy.copy(current_states_batch)
for input_index, input in enumerate(old_policy_values):
inputs['output_0_{}'.format(input_index)] = input
name = 'output_0_{}'.format(input_index)
if name in self.critic_network.online_network.inputs:
inputs[name] = input
value_loss = self.critic_network.online_network.\
accumulate_gradients(inputs, targets)
value_loss = self.critic_network.online_network.accumulate_gradients(inputs, targets)
self.critic_network.apply_gradients_to_online_network()
if self.tp.distributed:
self.critic_network.apply_gradients_to_global_network()
@@ -151,15 +155,23 @@ class PPOAgent(ActorCriticAgent):
actions = np.expand_dims(actions, -1)
# get old policy probabilities and distribution
old_policy = force_list(self.policy_network.target_network.predict([current_states]))
old_policy = force_list(self.policy_network.target_network.predict(current_states))
# calculate gradients and apply on both the local policy network and on the global policy network
fetches = [self.policy_network.online_network.output_heads[0].kl_divergence,
self.policy_network.online_network.output_heads[0].entropy]
inputs = copy.copy(current_states)
# TODO: why is this output 0 and not output 1?
inputs['output_0_0'] = actions
# TODO: does old_policy_distribution really need to be represented as a list?
# A: yes it does, in the event of discrete controls, it has just a mean
# otherwise, it has both a mean and standard deviation
for input_index, input in enumerate(old_policy):
inputs['output_0_{}'.format(input_index + 1)] = input
total_loss, policy_losses, unclipped_grads, fetch_result =\
self.policy_network.online_network.accumulate_gradients(
[current_states, actions] + old_policy, [advantages], additional_fetches=fetches)
inputs, [advantages], additional_fetches=fetches)
self.policy_network.apply_gradients_to_online_network()
if self.tp.distributed:
@@ -253,13 +265,9 @@ class PPOAgent(ActorCriticAgent):
return np.append(value_loss, policy_loss)
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
# convert to batch so we can run it through the network
observation = curr_state['observation']
observation = np.expand_dims(np.array(observation), 0)
if self.env.discrete_controls:
# DISCRETE
action_values = self.policy_network.online_network.predict(observation).squeeze()
action_values = self.policy_network.online_network.predict(self.tf_input_state(curr_state)).squeeze()
if phase == RunPhase.TRAIN:
action = self.exploration_policy.get_action(action_values)
@@ -269,7 +277,7 @@ class PPOAgent(ActorCriticAgent):
# self.entropy.add_sample(-np.sum(action_values * np.log(action_values)))
else:
# CONTINUOUS
action_values_mean, action_values_std = self.policy_network.online_network.predict(observation)
action_values_mean, action_values_std = self.policy_network.online_network.predict(self.tf_input_state(curr_state))
action_values_mean = action_values_mean.squeeze()
action_values_std = action_values_std.squeeze()
if phase == RunPhase.TRAIN: