mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
fix more agents
This commit is contained in:
@@ -114,7 +114,6 @@ class ClippedPPOAgent(ActorCriticAgent):
|
|||||||
# otherwise, it has both a mean and standard deviation
|
# otherwise, it has both a mean and standard deviation
|
||||||
for input_index, input in enumerate(old_policy_distribution):
|
for input_index, input in enumerate(old_policy_distribution):
|
||||||
inputs['output_0_{}'.format(input_index + 1)] = input
|
inputs['output_0_{}'.format(input_index + 1)] = input
|
||||||
# print('old_policy_distribution.shape', len(old_policy_distribution))
|
|
||||||
total_loss, policy_losses, unclipped_grads, fetch_result =\
|
total_loss, policy_losses, unclipped_grads, fetch_result =\
|
||||||
self.main_network.online_network.accumulate_gradients(
|
self.main_network.online_network.accumulate_gradients(
|
||||||
inputs, [total_return, advantages], additional_fetches=fetches)
|
inputs, [total_return, advantages], additional_fetches=fetches)
|
||||||
|
|||||||
@@ -31,12 +31,7 @@ class ImitationAgent(Agent):
|
|||||||
|
|
||||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||||
# convert to batch so we can run it through the network
|
# convert to batch so we can run it through the network
|
||||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
prediction = self.main_network.online_network.predict(self.tf_input_state(curr_state))
|
||||||
if self.tp.agent.use_measurements:
|
|
||||||
measurements = np.expand_dims(np.array(curr_state['measurements']), 0)
|
|
||||||
prediction = self.main_network.online_network.predict([observation, measurements])
|
|
||||||
else:
|
|
||||||
prediction = self.main_network.online_network.predict(observation)
|
|
||||||
|
|
||||||
# get action values and extract the best action from it
|
# get action values and extract the best action from it
|
||||||
action_values = self.extract_action_values(prediction)
|
action_values = self.extract_action_values(prediction)
|
||||||
|
|||||||
@@ -14,7 +14,10 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
#
|
#
|
||||||
|
|
||||||
from agents.value_optimization_agent import *
|
import numpy as np
|
||||||
|
|
||||||
|
from agents.value_optimization_agent import ValueOptimizationAgent
|
||||||
|
from utils import RunPhase, Signal
|
||||||
|
|
||||||
|
|
||||||
# Normalized Advantage Functions - https://arxiv.org/pdf/1603.00748.pdf
|
# Normalized Advantage Functions - https://arxiv.org/pdf/1603.00748.pdf
|
||||||
@@ -31,14 +34,17 @@ class NAFAgent(ValueOptimizationAgent):
|
|||||||
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
|
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
|
||||||
|
|
||||||
# TD error = r + discount*v_st_plus_1 - q_st
|
# TD error = r + discount*v_st_plus_1 - q_st
|
||||||
v_st_plus_1 = self.main_network.sess.run(self.main_network.target_network.output_heads[0].V,
|
v_st_plus_1 = self.main_network.target_network.predict(
|
||||||
feed_dict={self.main_network.target_network.inputs[0]: next_states})
|
next_states,
|
||||||
|
self.main_network.target_network.output_heads[0].V,
|
||||||
|
squeeze_output=False,
|
||||||
|
)
|
||||||
TD_targets = np.expand_dims(rewards, -1) + (1.0 - np.expand_dims(game_overs, -1)) * self.tp.agent.discount * v_st_plus_1
|
TD_targets = np.expand_dims(rewards, -1) + (1.0 - np.expand_dims(game_overs, -1)) * self.tp.agent.discount * v_st_plus_1
|
||||||
|
|
||||||
if len(actions.shape) == 1:
|
if len(actions.shape) == 1:
|
||||||
actions = np.expand_dims(actions, -1)
|
actions = np.expand_dims(actions, -1)
|
||||||
|
|
||||||
result = self.main_network.train_and_sync_networks([current_states, actions], TD_targets)
|
result = self.main_network.train_and_sync_networks({**current_states, 'output_0_0': actions}, TD_targets)
|
||||||
total_loss = result[0]
|
total_loss = result[0]
|
||||||
|
|
||||||
return total_loss
|
return total_loss
|
||||||
@@ -47,21 +53,21 @@ class NAFAgent(ValueOptimizationAgent):
|
|||||||
assert not self.env.discrete_controls, 'NAF works only for continuous control problems'
|
assert not self.env.discrete_controls, 'NAF works only for continuous control problems'
|
||||||
|
|
||||||
# convert to batch so we can run it through the network
|
# convert to batch so we can run it through the network
|
||||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
# observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||||
naf_head = self.main_network.online_network.output_heads[0]
|
naf_head = self.main_network.online_network.output_heads[0]
|
||||||
action_values = self.main_network.sess.run(naf_head.mu,
|
action_values = self.main_network.online_network.predict(
|
||||||
feed_dict={self.main_network.online_network.inputs[0]: observation})
|
self.tf_input_state(curr_state),
|
||||||
|
outputs=naf_head.mu,
|
||||||
|
squeeze_output=False,
|
||||||
|
)
|
||||||
if phase == RunPhase.TRAIN:
|
if phase == RunPhase.TRAIN:
|
||||||
action = self.exploration_policy.get_action(action_values)
|
action = self.exploration_policy.get_action(action_values)
|
||||||
else:
|
else:
|
||||||
action = action_values
|
action = action_values
|
||||||
|
|
||||||
Q, L, A, mu, V = self.main_network.sess.run(
|
Q, L, A, mu, V = self.main_network.online_network.predict(
|
||||||
[naf_head.Q, naf_head.L, naf_head.A, naf_head.mu, naf_head.V],
|
{**self.tf_input_state(curr_state), 'output_0_0': action_values},
|
||||||
feed_dict={
|
outputs=[naf_head.Q, naf_head.L, naf_head.A, naf_head.mu, naf_head.V],
|
||||||
self.main_network.online_network.inputs[0]: observation,
|
|
||||||
self.main_network.online_network.inputs[1]: action_values
|
|
||||||
}
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# store the q values statistics for logging
|
# store the q values statistics for logging
|
||||||
|
|||||||
@@ -64,17 +64,16 @@ class PolicyGradientsAgent(PolicyOptimizationAgent):
|
|||||||
self.returns_mean.add_sample(np.mean(total_returns))
|
self.returns_mean.add_sample(np.mean(total_returns))
|
||||||
self.returns_variance.add_sample(np.std(total_returns))
|
self.returns_variance.add_sample(np.std(total_returns))
|
||||||
|
|
||||||
result = self.main_network.online_network.accumulate_gradients([current_states, actions], targets)
|
result = self.main_network.online_network.accumulate_gradients({**current_states, 'output_0_0': actions}, targets)
|
||||||
total_loss = result[0]
|
total_loss = result[0]
|
||||||
|
|
||||||
return total_loss
|
return total_loss
|
||||||
|
|
||||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||||
# convert to batch so we can run it through the network
|
# convert to batch so we can run it through the network
|
||||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
|
||||||
if self.env.discrete_controls:
|
if self.env.discrete_controls:
|
||||||
# DISCRETE
|
# DISCRETE
|
||||||
action_values = self.main_network.online_network.predict(observation).squeeze()
|
action_values = self.main_network.online_network.predict(self.tf_input_state(curr_state)).squeeze()
|
||||||
if phase == RunPhase.TRAIN:
|
if phase == RunPhase.TRAIN:
|
||||||
action = self.exploration_policy.get_action(action_values)
|
action = self.exploration_policy.get_action(action_values)
|
||||||
else:
|
else:
|
||||||
@@ -83,7 +82,7 @@ class PolicyGradientsAgent(PolicyOptimizationAgent):
|
|||||||
self.entropy.add_sample(-np.sum(action_values * np.log(action_values + eps)))
|
self.entropy.add_sample(-np.sum(action_values * np.log(action_values + eps)))
|
||||||
else:
|
else:
|
||||||
# CONTINUOUS
|
# CONTINUOUS
|
||||||
result = self.main_network.online_network.predict(observation)
|
result = self.main_network.online_network.predict(self.tf_input_state(curr_state))
|
||||||
action_values = result[0].squeeze()
|
action_values = result[0].squeeze()
|
||||||
if phase == RunPhase.TRAIN:
|
if phase == RunPhase.TRAIN:
|
||||||
action = self.exploration_policy.get_action(action_values)
|
action = self.exploration_policy.get_action(action_values)
|
||||||
|
|||||||
@@ -26,7 +26,7 @@ class PPOAgent(ActorCriticAgent):
|
|||||||
self.critic_network = self.main_network
|
self.critic_network = self.main_network
|
||||||
|
|
||||||
# define the policy network
|
# define the policy network
|
||||||
tuning_parameters.agent.input_types = [InputTypes.Observation]
|
tuning_parameters.agent.input_types = {'observation': InputTypes.Observation}
|
||||||
tuning_parameters.agent.output_types = [OutputTypes.PPO]
|
tuning_parameters.agent.output_types = [OutputTypes.PPO]
|
||||||
tuning_parameters.agent.optimizer_type = 'Adam'
|
tuning_parameters.agent.optimizer_type = 'Adam'
|
||||||
tuning_parameters.agent.l2_regularization = 0
|
tuning_parameters.agent.l2_regularization = 0
|
||||||
@@ -53,7 +53,7 @@ class PPOAgent(ActorCriticAgent):
|
|||||||
# * Found not to have any impact *
|
# * Found not to have any impact *
|
||||||
# current_states_with_timestep = self.concat_state_and_timestep(batch)
|
# current_states_with_timestep = self.concat_state_and_timestep(batch)
|
||||||
|
|
||||||
current_state_values = self.critic_network.online_network.predict(current_state).squeeze()
|
current_state_values = self.critic_network.online_network.predict(current_states).squeeze()
|
||||||
|
|
||||||
# calculate advantages
|
# calculate advantages
|
||||||
advantages = []
|
advantages = []
|
||||||
@@ -102,7 +102,10 @@ class PPOAgent(ActorCriticAgent):
|
|||||||
batch_size = self.tp.batch_size
|
batch_size = self.tp.batch_size
|
||||||
for i in range(len(dataset) // batch_size):
|
for i in range(len(dataset) // batch_size):
|
||||||
# split to batches for first order optimization techniques
|
# split to batches for first order optimization techniques
|
||||||
current_states_batch = current_states[i * batch_size:(i + 1) * batch_size]
|
current_states_batch = {
|
||||||
|
k: v[i * batch_size:(i + 1) * batch_size]
|
||||||
|
for k, v in current_states.items()
|
||||||
|
}
|
||||||
total_return_batch = total_return[i * batch_size:(i + 1) * batch_size]
|
total_return_batch = total_return[i * batch_size:(i + 1) * batch_size]
|
||||||
old_policy_values = force_list(self.critic_network.target_network.predict(
|
old_policy_values = force_list(self.critic_network.target_network.predict(
|
||||||
current_states_batch).squeeze())
|
current_states_batch).squeeze())
|
||||||
@@ -114,10 +117,11 @@ class PPOAgent(ActorCriticAgent):
|
|||||||
|
|
||||||
inputs = copy.copy(current_states_batch)
|
inputs = copy.copy(current_states_batch)
|
||||||
for input_index, input in enumerate(old_policy_values):
|
for input_index, input in enumerate(old_policy_values):
|
||||||
inputs['output_0_{}'.format(input_index)] = input
|
name = 'output_0_{}'.format(input_index)
|
||||||
|
if name in self.critic_network.online_network.inputs:
|
||||||
|
inputs[name] = input
|
||||||
|
|
||||||
value_loss = self.critic_network.online_network.\
|
value_loss = self.critic_network.online_network.accumulate_gradients(inputs, targets)
|
||||||
accumulate_gradients(inputs, targets)
|
|
||||||
self.critic_network.apply_gradients_to_online_network()
|
self.critic_network.apply_gradients_to_online_network()
|
||||||
if self.tp.distributed:
|
if self.tp.distributed:
|
||||||
self.critic_network.apply_gradients_to_global_network()
|
self.critic_network.apply_gradients_to_global_network()
|
||||||
@@ -151,15 +155,23 @@ class PPOAgent(ActorCriticAgent):
|
|||||||
actions = np.expand_dims(actions, -1)
|
actions = np.expand_dims(actions, -1)
|
||||||
|
|
||||||
# get old policy probabilities and distribution
|
# get old policy probabilities and distribution
|
||||||
old_policy = force_list(self.policy_network.target_network.predict([current_states]))
|
old_policy = force_list(self.policy_network.target_network.predict(current_states))
|
||||||
|
|
||||||
# calculate gradients and apply on both the local policy network and on the global policy network
|
# calculate gradients and apply on both the local policy network and on the global policy network
|
||||||
fetches = [self.policy_network.online_network.output_heads[0].kl_divergence,
|
fetches = [self.policy_network.online_network.output_heads[0].kl_divergence,
|
||||||
self.policy_network.online_network.output_heads[0].entropy]
|
self.policy_network.online_network.output_heads[0].entropy]
|
||||||
|
|
||||||
|
inputs = copy.copy(current_states)
|
||||||
|
# TODO: why is this output 0 and not output 1?
|
||||||
|
inputs['output_0_0'] = actions
|
||||||
|
# TODO: does old_policy_distribution really need to be represented as a list?
|
||||||
|
# A: yes it does, in the event of discrete controls, it has just a mean
|
||||||
|
# otherwise, it has both a mean and standard deviation
|
||||||
|
for input_index, input in enumerate(old_policy):
|
||||||
|
inputs['output_0_{}'.format(input_index + 1)] = input
|
||||||
total_loss, policy_losses, unclipped_grads, fetch_result =\
|
total_loss, policy_losses, unclipped_grads, fetch_result =\
|
||||||
self.policy_network.online_network.accumulate_gradients(
|
self.policy_network.online_network.accumulate_gradients(
|
||||||
[current_states, actions] + old_policy, [advantages], additional_fetches=fetches)
|
inputs, [advantages], additional_fetches=fetches)
|
||||||
|
|
||||||
self.policy_network.apply_gradients_to_online_network()
|
self.policy_network.apply_gradients_to_online_network()
|
||||||
if self.tp.distributed:
|
if self.tp.distributed:
|
||||||
@@ -253,13 +265,9 @@ class PPOAgent(ActorCriticAgent):
|
|||||||
return np.append(value_loss, policy_loss)
|
return np.append(value_loss, policy_loss)
|
||||||
|
|
||||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||||
# convert to batch so we can run it through the network
|
|
||||||
observation = curr_state['observation']
|
|
||||||
observation = np.expand_dims(np.array(observation), 0)
|
|
||||||
|
|
||||||
if self.env.discrete_controls:
|
if self.env.discrete_controls:
|
||||||
# DISCRETE
|
# DISCRETE
|
||||||
action_values = self.policy_network.online_network.predict(observation).squeeze()
|
action_values = self.policy_network.online_network.predict(self.tf_input_state(curr_state)).squeeze()
|
||||||
|
|
||||||
if phase == RunPhase.TRAIN:
|
if phase == RunPhase.TRAIN:
|
||||||
action = self.exploration_policy.get_action(action_values)
|
action = self.exploration_policy.get_action(action_values)
|
||||||
@@ -269,7 +277,7 @@ class PPOAgent(ActorCriticAgent):
|
|||||||
# self.entropy.add_sample(-np.sum(action_values * np.log(action_values)))
|
# self.entropy.add_sample(-np.sum(action_values * np.log(action_values)))
|
||||||
else:
|
else:
|
||||||
# CONTINUOUS
|
# CONTINUOUS
|
||||||
action_values_mean, action_values_std = self.policy_network.online_network.predict(observation)
|
action_values_mean, action_values_std = self.policy_network.online_network.predict(self.tf_input_state(curr_state))
|
||||||
action_values_mean = action_values_mean.squeeze()
|
action_values_mean = action_values_mean.squeeze()
|
||||||
action_values_std = action_values_std.squeeze()
|
action_values_std = action_values_std.squeeze()
|
||||||
if phase == RunPhase.TRAIN:
|
if phase == RunPhase.TRAIN:
|
||||||
|
|||||||
@@ -296,16 +296,16 @@ class TensorFlowArchitecture(Architecture):
|
|||||||
|
|
||||||
return feed_dict
|
return feed_dict
|
||||||
|
|
||||||
def predict(self, inputs, outputs=None):
|
def predict(self, inputs, outputs=None, squeeze_output=True):
|
||||||
"""
|
"""
|
||||||
Run a forward pass of the network using the given input
|
Run a forward pass of the network using the given input
|
||||||
:param inputs: The input for the network
|
:param inputs: The input for the network
|
||||||
:param outputs: The output for the network, defaults to self.outputs
|
:param outputs: The output for the network, defaults to self.outputs
|
||||||
|
:param squeeze_output: call squeeze_list on output
|
||||||
:return: The network output
|
:return: The network output
|
||||||
|
|
||||||
WARNING: must only call once per state since each call is assumed by LSTM to be a new time step.
|
WARNING: must only call once per state since each call is assumed by LSTM to be a new time step.
|
||||||
"""
|
"""
|
||||||
# TODO: rename self.inputs -> self.input_placeholders
|
|
||||||
feed_dict = self._feed_dict(inputs)
|
feed_dict = self._feed_dict(inputs)
|
||||||
if outputs is None:
|
if outputs is None:
|
||||||
outputs = self.outputs
|
outputs = self.outputs
|
||||||
@@ -318,7 +318,10 @@ class TensorFlowArchitecture(Architecture):
|
|||||||
else:
|
else:
|
||||||
output = self.tp.sess.run(outputs, feed_dict)
|
output = self.tp.sess.run(outputs, feed_dict)
|
||||||
|
|
||||||
return squeeze_list(output)
|
if squeeze_output:
|
||||||
|
output = squeeze_list(output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
# def train_on_batch(self, inputs, targets, scaler=1., additional_fetches=None):
|
# def train_on_batch(self, inputs, targets, scaler=1., additional_fetches=None):
|
||||||
# """
|
# """
|
||||||
|
|||||||
Reference in New Issue
Block a user