1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00

Make distributed coach work end-to-end.

- With data store, memory backend and orchestrator interfaces.
This commit is contained in:
Balaji Subramaniam
2018-10-04 12:28:21 -07:00
committed by zach dwiel
parent 9f92064e67
commit 844a5af831
8 changed files with 300 additions and 169 deletions

View File

@@ -12,11 +12,14 @@ import time
import os
import json
from threading import Thread
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach.core_types import EnvironmentEpisodes, RunPhase
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.backend.memory_impl import construct_memory_params
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
# Q: specify alternative distributed memory, or should this go in the preset?
@@ -27,17 +30,23 @@ def has_checkpoint(checkpoint_dir):
"""
True if a checkpoint is present in checkpoint_dir
"""
return len(os.listdir(checkpoint_dir)) > 0
if os.path.isdir(checkpoint_dir):
if len(os.listdir(checkpoint_dir)) > 0:
return os.path.isfile(os.path.join(checkpoint_dir, "checkpoint"))
return False
def wait_for_checkpoint(checkpoint_dir, timeout=10):
def wait_for_checkpoint(checkpoint_dir, data_store=None, timeout=10):
"""
block until there is a checkpoint in checkpoint_dir
"""
for i in range(timeout):
if data_store:
data_store.load_from_store()
if has_checkpoint(checkpoint_dir):
return
time.sleep(1)
time.sleep(10)
# one last time
if has_checkpoint(checkpoint_dir):
@@ -52,20 +61,26 @@ def wait_for_checkpoint(checkpoint_dir, timeout=10):
))
def data_store_ckpt_load(data_store):
while True:
data_store.load_from_store()
time.sleep(10)
def rollout_worker(graph_manager, checkpoint_dir):
"""
restore a checkpoint then perform rollouts using the restored model
wait for first checkpoint then perform rollouts using the model
"""
wait_for_checkpoint(checkpoint_dir)
task_parameters = TaskParameters()
task_parameters.__dict__['checkpoint_restore_dir'] = checkpoint_dir
time.sleep(30)
graph_manager.create_graph(task_parameters)
graph_manager.phase = RunPhase.TRAIN
for i in range(10000000):
graph_manager.act(EnvironmentEpisodes(num_steps=10))
graph_manager.restore_checkpoint()
graph_manager.act(EnvironmentEpisodes(num_steps=10))
graph_manager.phase = RunPhase.UNDEFINED
@@ -91,6 +106,9 @@ def main():
parser.add_argument('--memory_backend_params',
help="(string) JSON string of the memory backend params",
type=str)
parser.add_argument('--data_store_params',
help="(string) JSON string of the data store params",
type=str)
args = parser.parse_args()
@@ -98,9 +116,20 @@ def main():
if args.memory_backend_params:
args.memory_backend_params = json.loads(args.memory_backend_params)
if 'run_type' not in args.memory_backend_params:
args.memory_backend_params['run_type'] = 'worker'
print(args.memory_backend_params)
args.memory_backend_params['run_type'] = 'worker'
print(construct_memory_params(args.memory_backend_params))
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
if args.data_store_params:
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
data_store_params.checkpoint_dir = args.checkpoint_dir
graph_manager.data_store_params = data_store_params
data_store = get_data_store(data_store_params)
wait_for_checkpoint(checkpoint_dir=args.checkpoint_dir, data_store=data_store)
# thread = Thread(target = data_store_ckpt_load, args = [data_store])
# thread.start()
rollout_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,