1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00

Make distributed coach work end-to-end.

- With data store, memory backend and orchestrator interfaces.
This commit is contained in:
Balaji Subramaniam
2018-10-04 12:28:21 -07:00
committed by zach dwiel
parent 9f92064e67
commit 844a5af831
8 changed files with 300 additions and 169 deletions

View File

@@ -4,15 +4,19 @@ import argparse
import time
import json
from threading import Thread
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach import core_types
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.backend.memory_impl import construct_memory_params
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
# Q: specify alternative distributed memory, or should this go in the preset?
# A: preset must define distributed memory to be used. we aren't going to take a non-distributed preset and automatically distribute it.
def data_store_ckpt_save(data_store):
while True:
data_store.save_to_store()
time.sleep(10)
def training_worker(graph_manager, checkpoint_dir):
"""
@@ -58,16 +62,26 @@ def main():
parser.add_argument('--memory_backend_params',
help="(string) JSON string of the memory backend params",
type=str)
parser.add_argument('--data_store_params',
help="(string) JSON string of the data store params",
type=str)
args = parser.parse_args()
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
if args.memory_backend_params:
args.memory_backend_params = json.loads(args.memory_backend_params)
if 'run_type' not in args.memory_backend_params:
args.memory_backend_params['run_type'] = 'trainer'
args.memory_backend_params['run_type'] = 'trainer'
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
if args.data_store_params:
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
data_store_params.checkpoint_dir = args.checkpoint_dir
graph_manager.data_store_params = data_store_params
# data_store = get_data_store(data_store_params)
# thread = Thread(target = data_store_ckpt_save, args = [data_store])
# thread.start()
training_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,