mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Make distributed coach work end-to-end.
- With data store, memory backend and orchestrator interfaces.
This commit is contained in:
committed by
zach dwiel
parent
9f92064e67
commit
844a5af831
15
rl_coach/data_stores/__init__.py
Normal file
15
rl_coach/data_stores/__init__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
@@ -1,5 +1,6 @@
|
||||
from rl_coach.data_stores.nfs_data_store import NFSDataStore, NFSDataStoreParameters
|
||||
from rl_coach.data_stores.s3_data_store import S3DataStore, S3DataStoreParameters
|
||||
from rl_coach.data_stores.data_store import DataStoreParameters
|
||||
|
||||
|
||||
def get_data_store(params):
|
||||
@@ -10,3 +11,14 @@ def get_data_store(params):
|
||||
data_store = S3DataStore(params)
|
||||
|
||||
return data_store
|
||||
|
||||
def construct_data_store_params(json: dict):
|
||||
ds_params_instance = None
|
||||
ds_params = DataStoreParameters(json['store_type'], json['orchestrator_type'], json['orchestrator_params'])
|
||||
if json['store_type'] == 'nfs':
|
||||
ds_params_instance = NFSDataStoreParameters(ds_params)
|
||||
elif json['store_type'] == 's3':
|
||||
ds_params_instance = S3DataStoreParameters(ds_params=ds_params, end_point=json['end_point'],
|
||||
bucket_name=json['bucket_name'], checkpoint_dir=json['checkpoint_dir'])
|
||||
|
||||
return ds_params_instance
|
||||
|
||||
@@ -46,6 +46,7 @@ class S3DataStore(DataStore):
|
||||
|
||||
def save_to_store(self):
|
||||
try:
|
||||
print("saving to s3")
|
||||
for root, dirs, files in os.walk(self.params.checkpoint_dir):
|
||||
for filename in files:
|
||||
abs_name = os.path.abspath(os.path.join(root, filename))
|
||||
@@ -56,6 +57,7 @@ class S3DataStore(DataStore):
|
||||
|
||||
def load_from_store(self):
|
||||
try:
|
||||
print("loading from s3")
|
||||
objects = self.mc.list_objects_v2(self.params.bucket_name, recursive=True)
|
||||
for obj in objects:
|
||||
filename = os.path.abspath(os.path.join(self.params.checkpoint_dir, obj.object_name))
|
||||
|
||||
@@ -30,7 +30,12 @@ from rl_coach.core_types import TotalStepsCounter, RunPhase, PlayingStepsType, T
|
||||
from rl_coach.environments.environment import Environment
|
||||
from rl_coach.level_manager import LevelManager
|
||||
from rl_coach.logger import screen, Logger
|
||||
<<<<<<< HEAD
|
||||
from rl_coach.utils import set_cpu, start_shell_command_and_wait
|
||||
=======
|
||||
from rl_coach.utils import set_cpu
|
||||
from rl_coach.data_stores.data_store_impl import get_data_store
|
||||
>>>>>>> Make distributed coach work end-to-end.
|
||||
|
||||
|
||||
class ScheduleParameters(Parameters):
|
||||
@@ -367,6 +372,11 @@ class GraphManager(object):
|
||||
"""
|
||||
self.verify_graph_was_created()
|
||||
|
||||
if hasattr(self, 'data_store_params') and hasattr(self.agent_params.memory, 'memory_backend_params'):
|
||||
if self.agent_params.memory.memory_backend_params.run_type == "worker":
|
||||
data_store = get_data_store(self.data_store_params)
|
||||
data_store.load_from_store()
|
||||
|
||||
# perform several steps of playing
|
||||
result = None
|
||||
|
||||
@@ -522,6 +532,11 @@ class GraphManager(object):
|
||||
self.checkpoint_id += 1
|
||||
self.last_checkpoint_saving_time = time.time()
|
||||
|
||||
if hasattr(self, 'data_store_params'):
|
||||
data_store = get_data_store(self.data_store_params)
|
||||
data_store.save_to_store()
|
||||
|
||||
|
||||
def improve(self):
|
||||
"""
|
||||
The main loop of the run.
|
||||
|
||||
@@ -4,9 +4,11 @@ import json
|
||||
import time
|
||||
from typing import List
|
||||
from rl_coach.orchestrators.deploy import Deploy, DeployParameters
|
||||
from kubernetes import client, config
|
||||
from kubernetes import client as k8sclient, config as k8sconfig
|
||||
from rl_coach.memories.backend.memory import MemoryBackendParameters
|
||||
from rl_coach.memories.backend.memory_impl import get_memory_backend
|
||||
from rl_coach.data_stores.data_store import DataStoreParameters
|
||||
from rl_coach.data_stores.data_store_impl import get_data_store
|
||||
|
||||
|
||||
class RunTypeParameters():
|
||||
@@ -29,8 +31,9 @@ class RunTypeParameters():
|
||||
|
||||
class KubernetesParameters(DeployParameters):
|
||||
|
||||
def __init__(self, run_type_params: List[RunTypeParameters], kubeconfig: str = None, namespace: str = "", nfs_server: str = None,
|
||||
nfs_path: str = None, checkpoint_dir: str = '/checkpoint', memory_backend_parameters: MemoryBackendParameters = None):
|
||||
def __init__(self, run_type_params: List[RunTypeParameters], kubeconfig: str = None, namespace: str = None,
|
||||
nfs_server: str = None, nfs_path: str = None, checkpoint_dir: str = '/checkpoint',
|
||||
memory_backend_parameters: MemoryBackendParameters = None, data_store_params: DataStoreParameters = None):
|
||||
|
||||
self.run_type_params = {}
|
||||
for run_type_param in run_type_params:
|
||||
@@ -41,195 +44,204 @@ class KubernetesParameters(DeployParameters):
|
||||
self.nfs_path = nfs_path
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
self.memory_backend_parameters = memory_backend_parameters
|
||||
self.data_store_params = data_store_params
|
||||
|
||||
|
||||
class Kubernetes(Deploy):
|
||||
|
||||
def __init__(self, deploy_parameters: KubernetesParameters):
|
||||
super().__init__(deploy_parameters)
|
||||
self.deploy_parameters = deploy_parameters
|
||||
if self.deploy_parameters.kubeconfig:
|
||||
config.load_kube_config()
|
||||
def __init__(self, params: KubernetesParameters):
|
||||
super().__init__(params)
|
||||
self.params = params
|
||||
if self.params.kubeconfig:
|
||||
k8sconfig.load_kube_config()
|
||||
else:
|
||||
config.load_incluster_config()
|
||||
k8sconfig.load_incluster_config()
|
||||
|
||||
if not self.params.namespace:
|
||||
_, current_context = k8sconfig.list_kube_config_contexts()
|
||||
self.params.namespace = current_context['context']['namespace']
|
||||
|
||||
if not self.deploy_parameters.namespace:
|
||||
_, current_context = config.list_kube_config_contexts()
|
||||
self.deploy_parameters.namespace = current_context['context']['namespace']
|
||||
self.nfs_pvc_name = 'nfs-checkpoint-pvc'
|
||||
|
||||
if os.environ.get('http_proxy'):
|
||||
client.Configuration._default.proxy = os.environ.get('http_proxy')
|
||||
k8sclient.Configuration._default.proxy = os.environ.get('http_proxy')
|
||||
|
||||
self.deploy_parameters.memory_backend_parameters.orchestrator_params = {'namespace': self.deploy_parameters.namespace}
|
||||
self.memory_backend = get_memory_backend(self.deploy_parameters.memory_backend_parameters)
|
||||
self.params.memory_backend_parameters.orchestrator_params = {'namespace': self.params.namespace}
|
||||
self.memory_backend = get_memory_backend(self.params.memory_backend_parameters)
|
||||
|
||||
self.params.data_store_params.orchestrator_params = {'namespace': self.params.namespace}
|
||||
self.data_store = get_data_store(self.params.data_store_params)
|
||||
|
||||
if self.params.data_store_params.store_type == "s3":
|
||||
self.s3_access_key = None
|
||||
self.s3_secret_key = None
|
||||
if self.params.data_store_params.creds_file:
|
||||
s3config = ConfigParser()
|
||||
s3config.read(self.params.data_store_params.creds_file)
|
||||
try:
|
||||
self.s3_access_key = s3config.get('default', 'aws_access_key_id')
|
||||
self.s3_secret_key = s3config.get('default', 'aws_secret_access_key')
|
||||
except Error as e:
|
||||
print("Error when reading S3 credentials file: %s", e)
|
||||
else:
|
||||
self.s3_access_key = os.environ.get('ACCESS_KEY_ID')
|
||||
self.s3_secret_key = os.environ.get('SECRET_ACCESS_KEY')
|
||||
|
||||
def setup(self) -> bool:
|
||||
|
||||
self.memory_backend.deploy()
|
||||
if not self.create_nfs_resources():
|
||||
return False
|
||||
return True
|
||||
|
||||
def create_nfs_resources(self):
|
||||
persistent_volume = client.V1PersistentVolume(
|
||||
api_version="v1",
|
||||
kind="PersistentVolume",
|
||||
metadata=client.V1ObjectMeta(
|
||||
name='nfs-checkpoint-pv',
|
||||
labels={'app': 'nfs-checkpoint-pv'}
|
||||
),
|
||||
spec=client.V1PersistentVolumeSpec(
|
||||
access_modes=["ReadWriteMany"],
|
||||
nfs=client.V1NFSVolumeSource(
|
||||
path=self.deploy_parameters.nfs_path,
|
||||
server=self.deploy_parameters.nfs_server
|
||||
),
|
||||
capacity={'storage': '10Gi'},
|
||||
storage_class_name=""
|
||||
)
|
||||
)
|
||||
api_client = client.CoreV1Api()
|
||||
try:
|
||||
api_client.create_persistent_volume(persistent_volume)
|
||||
except client.rest.ApiException as e:
|
||||
print("Got exception: %s\n while creating the NFS PV", e)
|
||||
return False
|
||||
|
||||
persistent_volume_claim = client.V1PersistentVolumeClaim(
|
||||
api_version="v1",
|
||||
kind="PersistentVolumeClaim",
|
||||
metadata=client.V1ObjectMeta(
|
||||
name="nfs-checkpoint-pvc"
|
||||
),
|
||||
spec=client.V1PersistentVolumeClaimSpec(
|
||||
access_modes=["ReadWriteMany"],
|
||||
resources=client.V1ResourceRequirements(
|
||||
requests={'storage': '10Gi'}
|
||||
),
|
||||
selector=client.V1LabelSelector(
|
||||
match_labels={'app': 'nfs-checkpoint-pv'}
|
||||
),
|
||||
storage_class_name=""
|
||||
)
|
||||
)
|
||||
|
||||
try:
|
||||
api_client.create_namespaced_persistent_volume_claim(self.deploy_parameters.namespace, persistent_volume_claim)
|
||||
except client.rest.ApiException as e:
|
||||
print("Got exception: %s\n while creating the NFS PVC", e)
|
||||
if not self.data_store.deploy():
|
||||
return False
|
||||
return True
|
||||
|
||||
def deploy_trainer(self) -> bool:
|
||||
|
||||
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
|
||||
trainer_params = self.params.run_type_params.get('trainer', None)
|
||||
if not trainer_params:
|
||||
return False
|
||||
|
||||
trainer_params.command += ['--memory_backend_params', json.dumps(self.deploy_parameters.memory_backend_parameters.__dict__)]
|
||||
trainer_params.command += ['--memory_backend_params', json.dumps(self.params.memory_backend_parameters.__dict__)]
|
||||
trainer_params.command += ['--data_store_params', json.dumps(self.params.data_store_params.__dict__)]
|
||||
|
||||
name = "{}-{}".format(trainer_params.run_type, uuid.uuid4())
|
||||
|
||||
container = client.V1Container(
|
||||
if self.params.data_store_params.store_type == "nfs":
|
||||
container = k8sclient.V1Container(
|
||||
name=name,
|
||||
image=trainer_params.image,
|
||||
command=trainer_params.command,
|
||||
args=trainer_params.arguments,
|
||||
image_pull_policy='Always',
|
||||
volume_mounts=[client.V1VolumeMount(
|
||||
volume_mounts=[k8sclient.V1VolumeMount(
|
||||
name='nfs-pvc',
|
||||
mount_path=trainer_params.checkpoint_dir
|
||||
)]
|
||||
)
|
||||
template = client.V1PodTemplateSpec(
|
||||
metadata=client.V1ObjectMeta(labels={'app': name}),
|
||||
spec=client.V1PodSpec(
|
||||
template = k8sclient.V1PodTemplateSpec(
|
||||
metadata=k8sclient.V1ObjectMeta(labels={'app': name}),
|
||||
spec=k8sclient.V1PodSpec(
|
||||
containers=[container],
|
||||
volumes=[client.V1Volume(
|
||||
volumes=[k8sclient.V1Volume(
|
||||
name="nfs-pvc",
|
||||
persistent_volume_claim=client.V1PersistentVolumeClaimVolumeSource(
|
||||
persistent_volume_claim=k8sclient.V1PersistentVolumeClaimVolumeSource(
|
||||
claim_name=self.nfs_pvc_name
|
||||
)
|
||||
)]
|
||||
),
|
||||
)
|
||||
deployment_spec = client.V1DeploymentSpec(
|
||||
else:
|
||||
container = k8sclient.V1Container(
|
||||
name=name,
|
||||
image=trainer_params.image,
|
||||
command=trainer_params.command,
|
||||
args=trainer_params.arguments,
|
||||
image_pull_policy='Always',
|
||||
env=[k8sclient.V1EnvVar("ACCESS_KEY_ID", self.s3_access_key),
|
||||
k8sclient.V1EnvVar("SECRET_ACCESS_KEY", self.s3_secret_key)]
|
||||
)
|
||||
template = k8sclient.V1PodTemplateSpec(
|
||||
metadata=k8sclient.V1ObjectMeta(labels={'app': name}),
|
||||
spec=k8sclient.V1PodSpec(
|
||||
containers=[container]
|
||||
),
|
||||
)
|
||||
|
||||
deployment_spec = k8sclient.V1DeploymentSpec(
|
||||
replicas=trainer_params.num_replicas,
|
||||
template=template,
|
||||
selector=client.V1LabelSelector(
|
||||
selector=k8sclient.V1LabelSelector(
|
||||
match_labels={'app': name}
|
||||
)
|
||||
)
|
||||
|
||||
deployment = client.V1Deployment(
|
||||
deployment = k8sclient.V1Deployment(
|
||||
api_version='apps/v1',
|
||||
kind='Deployment',
|
||||
metadata=client.V1ObjectMeta(name=name),
|
||||
metadata=k8sclient.V1ObjectMeta(name=name),
|
||||
spec=deployment_spec
|
||||
)
|
||||
|
||||
api_client = client.AppsV1Api()
|
||||
api_client = k8sclient.AppsV1Api()
|
||||
try:
|
||||
api_client.create_namespaced_deployment(self.deploy_parameters.namespace, deployment)
|
||||
api_client.create_namespaced_deployment(self.params.namespace, deployment)
|
||||
trainer_params.orchestration_params['deployment_name'] = name
|
||||
return True
|
||||
except client.rest.ApiException as e:
|
||||
except k8sclient.rest.ApiException as e:
|
||||
print("Got exception: %s\n while creating deployment", e)
|
||||
return False
|
||||
|
||||
def deploy_worker(self):
|
||||
|
||||
worker_params = self.deploy_parameters.run_type_params.get('worker', None)
|
||||
worker_params = self.params.run_type_params.get('worker', None)
|
||||
if not worker_params:
|
||||
return False
|
||||
|
||||
worker_params.command += ['--memory_backend_params', json.dumps(self.deploy_parameters.memory_backend_parameters.__dict__)]
|
||||
worker_params.command += ['--memory_backend_params', json.dumps(self.params.memory_backend_parameters.__dict__)]
|
||||
worker_params.command += ['--data_store_params', json.dumps(self.params.data_store_params.__dict__)]
|
||||
|
||||
name = "{}-{}".format(worker_params.run_type, uuid.uuid4())
|
||||
|
||||
container = client.V1Container(
|
||||
if self.params.data_store_params.store_type == "nfs":
|
||||
container = k8sclient.V1Container(
|
||||
name=name,
|
||||
image=worker_params.image,
|
||||
command=worker_params.command,
|
||||
args=worker_params.arguments,
|
||||
image_pull_policy='Always',
|
||||
volume_mounts=[client.V1VolumeMount(
|
||||
volume_mounts=[k8sclient.V1VolumeMount(
|
||||
name='nfs-pvc',
|
||||
mount_path=worker_params.checkpoint_dir
|
||||
)]
|
||||
)
|
||||
template = client.V1PodTemplateSpec(
|
||||
metadata=client.V1ObjectMeta(labels={'app': name}),
|
||||
spec=client.V1PodSpec(
|
||||
template = k8sclient.V1PodTemplateSpec(
|
||||
metadata=k8sclient.V1ObjectMeta(labels={'app': name}),
|
||||
spec=k8sclient.V1PodSpec(
|
||||
containers=[container],
|
||||
volumes=[client.V1Volume(
|
||||
volumes=[k8sclient.V1Volume(
|
||||
name="nfs-pvc",
|
||||
persistent_volume_claim=client.V1PersistentVolumeClaimVolumeSource(
|
||||
persistent_volume_claim=k8sclient.V1PersistentVolumeClaimVolumeSource(
|
||||
claim_name=self.nfs_pvc_name
|
||||
)
|
||||
)],
|
||||
),
|
||||
)
|
||||
else:
|
||||
container = k8sclient.V1Container(
|
||||
name=name,
|
||||
image=worker_params.image,
|
||||
command=worker_params.command,
|
||||
args=worker_params.arguments,
|
||||
image_pull_policy='Always',
|
||||
env=[k8sclient.V1EnvVar("ACCESS_KEY_ID", self.s3_access_key),
|
||||
k8sclient.V1EnvVar("SECRET_ACCESS_KEY", self.s3_secret_key)]
|
||||
)
|
||||
template = k8sclient.V1PodTemplateSpec(
|
||||
metadata=k8sclient.V1ObjectMeta(labels={'app': name}),
|
||||
spec=k8sclient.V1PodSpec(
|
||||
containers=[container]
|
||||
)
|
||||
)
|
||||
|
||||
deployment_spec = client.V1DeploymentSpec(
|
||||
deployment_spec = k8sclient.V1DeploymentSpec(
|
||||
replicas=worker_params.num_replicas,
|
||||
template=template,
|
||||
selector=client.V1LabelSelector(
|
||||
selector=k8sclient.V1LabelSelector(
|
||||
match_labels={'app': name}
|
||||
)
|
||||
)
|
||||
deployment = client.V1Deployment(
|
||||
deployment = k8sclient.V1Deployment(
|
||||
api_version='apps/v1',
|
||||
kind="Deployment",
|
||||
metadata=client.V1ObjectMeta(name=name),
|
||||
metadata=k8sclient.V1ObjectMeta(name=name),
|
||||
spec=deployment_spec
|
||||
)
|
||||
|
||||
api_client = client.AppsV1Api()
|
||||
api_client = k8sclient.AppsV1Api()
|
||||
try:
|
||||
api_client.create_namespaced_deployment(self.deploy_parameters.namespace, deployment)
|
||||
api_client.create_namespaced_deployment(self.params.namespace, deployment)
|
||||
worker_params.orchestration_params['deployment_name'] = name
|
||||
return True
|
||||
except client.rest.ApiException as e:
|
||||
except k8sclient.rest.ApiException as e:
|
||||
print("Got exception: %s\n while creating deployment", e)
|
||||
return False
|
||||
|
||||
@@ -237,19 +249,19 @@ class Kubernetes(Deploy):
|
||||
pass
|
||||
|
||||
def trainer_logs(self):
|
||||
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
|
||||
trainer_params = self.params.run_type_params.get('trainer', None)
|
||||
if not trainer_params:
|
||||
return
|
||||
|
||||
api_client = client.CoreV1Api()
|
||||
api_client = k8sclient.CoreV1Api()
|
||||
pod = None
|
||||
try:
|
||||
pods = api_client.list_namespaced_pod(self.deploy_parameters.namespace, label_selector='app={}'.format(
|
||||
pods = api_client.list_namespaced_pod(self.params.namespace, label_selector='app={}'.format(
|
||||
trainer_params.orchestration_params['deployment_name']
|
||||
))
|
||||
|
||||
pod = pods.items[0]
|
||||
except client.rest.ApiException as e:
|
||||
except k8sclient.rest.ApiException as e:
|
||||
print("Got exception: %s\n while reading pods", e)
|
||||
return
|
||||
|
||||
@@ -264,17 +276,17 @@ class Kubernetes(Deploy):
|
||||
# Try to tail the pod logs
|
||||
try:
|
||||
print(corev1_api.read_namespaced_pod_log(
|
||||
pod_name, self.deploy_parameters.namespace, follow=True
|
||||
pod_name, self.params.namespace, follow=True
|
||||
), flush=True)
|
||||
except client.rest.ApiException as e:
|
||||
except k8sclient.rest.ApiException as e:
|
||||
pass
|
||||
|
||||
# This part will get executed if the pod is one of the following phases: not ready, failed or terminated.
|
||||
# Check if the pod has errored out, else just try again.
|
||||
# Get the pod
|
||||
try:
|
||||
pod = corev1_api.read_namespaced_pod(pod_name, self.deploy_parameters.namespace)
|
||||
except client.rest.ApiException as e:
|
||||
pod = corev1_api.read_namespaced_pod(pod_name, self.params.namespace)
|
||||
except k8sclient.rest.ApiException as e:
|
||||
continue
|
||||
|
||||
if not hasattr(pod, 'status') or not pod.status:
|
||||
@@ -293,18 +305,19 @@ class Kubernetes(Deploy):
|
||||
return
|
||||
|
||||
def undeploy(self):
|
||||
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
|
||||
api_client = client.AppsV1Api()
|
||||
delete_options = client.V1DeleteOptions()
|
||||
trainer_params = self.params.run_type_params.get('trainer', None)
|
||||
api_client = k8sclient.AppsV1Api()
|
||||
delete_options = k8sclient.V1DeleteOptions()
|
||||
if trainer_params:
|
||||
try:
|
||||
api_client.delete_namespaced_deployment(trainer_params.orchestration_params['deployment_name'], self.deploy_parameters.namespace, delete_options)
|
||||
except client.rest.ApiException as e:
|
||||
api_client.delete_namespaced_deployment(trainer_params.orchestration_params['deployment_name'], self.params.namespace, delete_options)
|
||||
except k8sclient.rest.ApiException as e:
|
||||
print("Got exception: %s\n while deleting trainer", e)
|
||||
worker_params = self.deploy_parameters.run_type_params.get('worker', None)
|
||||
worker_params = self.params.run_type_params.get('worker', None)
|
||||
if worker_params:
|
||||
try:
|
||||
api_client.delete_namespaced_deployment(worker_params.orchestration_params['deployment_name'], self.deploy_parameters.namespace, delete_options)
|
||||
except client.rest.ApiException as e:
|
||||
api_client.delete_namespaced_deployment(worker_params.orchestration_params['deployment_name'], self.params.namespace, delete_options)
|
||||
except k8sclient.rest.ApiException as e:
|
||||
print("Got exception: %s\n while deleting workers", e)
|
||||
self.memory_backend.undeploy()
|
||||
self.data_store.undeploy()
|
||||
|
||||
@@ -2,19 +2,36 @@ import argparse
|
||||
|
||||
from rl_coach.orchestrators.kubernetes_orchestrator import KubernetesParameters, Kubernetes, RunTypeParameters
|
||||
from rl_coach.memories.backend.redis import RedisPubSubMemoryBackendParameters
|
||||
from rl_coach.data_stores.data_store import DataStoreParameters
|
||||
from rl_coach.data_stores.s3_data_store import S3DataStoreParameters
|
||||
from rl_coach.data_stores.nfs_data_store import NFSDataStoreParameters
|
||||
|
||||
|
||||
def main(preset: str, image: str='ajaysudh/testing:coach', num_workers: int=1, nfs_server: str="", nfs_path: str="", memory_backend: str=""):
|
||||
def main(preset: str, image: str='ajaysudh/testing:coach', num_workers: int=1, nfs_server: str=None, nfs_path: str=None,
|
||||
memory_backend: str=None, data_store: str=None, s3_end_point: str=None, s3_bucket_name: str=None):
|
||||
rollout_command = ['python3', 'rl_coach/rollout_worker.py', '-p', preset]
|
||||
training_command = ['python3', 'rl_coach/training_worker.py', '-p', preset]
|
||||
|
||||
memory_backend_params = None
|
||||
if memory_backend == "redispubsub":
|
||||
memory_backend_params = RedisPubSubMemoryBackendParameters()
|
||||
|
||||
ds_params_instance = None
|
||||
if data_store == "s3":
|
||||
ds_params = DataStoreParameters("s3", "", "")
|
||||
ds_params_instance = S3DataStoreParameters(ds_params=ds_params, end_point=s3_end_point, bucket_name=s3_bucket_name,
|
||||
checkpoint_dir="/checkpoint")
|
||||
elif data_store == "nfs":
|
||||
ds_params = DataStoreParameters("nfs", "kubernetes", {"namespace": "default"})
|
||||
ds_params_instance = NFSDataStoreParameters(ds_params)
|
||||
|
||||
worker_run_type_params = RunTypeParameters(image, rollout_command, run_type="worker")
|
||||
trainer_run_type_params = RunTypeParameters(image, training_command, run_type="trainer")
|
||||
|
||||
orchestration_params = KubernetesParameters([worker_run_type_params, trainer_run_type_params], kubeconfig='~/.kube/config', nfs_server=nfs_server,
|
||||
nfs_path=nfs_path, memory_backend_parameters=memory_backend_params)
|
||||
orchestration_params = KubernetesParameters([worker_run_type_params, trainer_run_type_params],
|
||||
kubeconfig='~/.kube/config', nfs_server=nfs_server, nfs_path=nfs_path,
|
||||
memory_backend_parameters=memory_backend_params,
|
||||
data_store_params=ds_params_instance)
|
||||
orchestrator = Kubernetes(orchestration_params)
|
||||
if not orchestrator.setup():
|
||||
print("Could not setup")
|
||||
@@ -36,7 +53,7 @@ def main(preset: str, image: str='ajaysudh/testing:coach', num_workers: int=1, n
|
||||
orchestrator.trainer_logs()
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
orchestrator.undeploy()
|
||||
# orchestrator.undeploy()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@@ -46,21 +63,33 @@ if __name__ == '__main__':
|
||||
type=str,
|
||||
required=True)
|
||||
parser.add_argument('-p', '--preset',
|
||||
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
|
||||
help="(string) Name of a preset to run (class name from the 'presets' directory).",
|
||||
type=str,
|
||||
required=True)
|
||||
parser.add_argument('--memory-backend',
|
||||
help="(string) Memory backend to use.",
|
||||
type=str,
|
||||
default="redispubsub")
|
||||
parser.add_argument('-ds', '--data-store',
|
||||
help="(string) Data store to use.",
|
||||
type=str,
|
||||
default="s3")
|
||||
parser.add_argument('-ns', '--nfs-server',
|
||||
help="(string) Addresss of the nfs server.)",
|
||||
help="(string) Addresss of the nfs server.",
|
||||
type=str,
|
||||
required=True)
|
||||
parser.add_argument('-np', '--nfs-path',
|
||||
help="(string) Exported path for the nfs server",
|
||||
help="(string) Exported path for the nfs server.",
|
||||
type=str,
|
||||
required=True)
|
||||
parser.add_argument('--memory_backend',
|
||||
help="(string) Memory backend to use",
|
||||
parser.add_argument('--s3-end-point',
|
||||
help="(string) S3 endpoint to use when S3 data store is used.",
|
||||
type=str,
|
||||
default="redispubsub")
|
||||
required=True)
|
||||
parser.add_argument('--s3-bucket-name',
|
||||
help="(string) S3 bucket name to use when S3 data store is used.",
|
||||
type=str,
|
||||
required=True)
|
||||
|
||||
# parser.add_argument('--checkpoint_dir',
|
||||
# help='(string) Path to a folder containing a checkpoint to write the model to.',
|
||||
@@ -68,4 +97,6 @@ if __name__ == '__main__':
|
||||
# default='/checkpoint')
|
||||
args = parser.parse_args()
|
||||
|
||||
main(preset=args.preset, image=args.image, nfs_server=args.nfs_server, nfs_path=args.nfs_path, memory_backend=args.memory_backend)
|
||||
main(preset=args.preset, image=args.image, nfs_server=args.nfs_server, nfs_path=args.nfs_path,
|
||||
memory_backend=args.memory_backend, data_store=args.data_store, s3_end_point=args.s3_end_point,
|
||||
s3_bucket_name=args.s3_bucket_name)
|
||||
|
||||
@@ -12,11 +12,14 @@ import time
|
||||
import os
|
||||
import json
|
||||
|
||||
from threading import Thread
|
||||
|
||||
from rl_coach.base_parameters import TaskParameters
|
||||
from rl_coach.coach import expand_preset
|
||||
from rl_coach.core_types import EnvironmentEpisodes, RunPhase
|
||||
from rl_coach.utils import short_dynamic_import
|
||||
from rl_coach.memories.backend.memory_impl import construct_memory_params
|
||||
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
|
||||
|
||||
|
||||
# Q: specify alternative distributed memory, or should this go in the preset?
|
||||
@@ -27,17 +30,23 @@ def has_checkpoint(checkpoint_dir):
|
||||
"""
|
||||
True if a checkpoint is present in checkpoint_dir
|
||||
"""
|
||||
return len(os.listdir(checkpoint_dir)) > 0
|
||||
if os.path.isdir(checkpoint_dir):
|
||||
if len(os.listdir(checkpoint_dir)) > 0:
|
||||
return os.path.isfile(os.path.join(checkpoint_dir, "checkpoint"))
|
||||
|
||||
return False
|
||||
|
||||
def wait_for_checkpoint(checkpoint_dir, timeout=10):
|
||||
def wait_for_checkpoint(checkpoint_dir, data_store=None, timeout=10):
|
||||
"""
|
||||
block until there is a checkpoint in checkpoint_dir
|
||||
"""
|
||||
for i in range(timeout):
|
||||
if data_store:
|
||||
data_store.load_from_store()
|
||||
|
||||
if has_checkpoint(checkpoint_dir):
|
||||
return
|
||||
time.sleep(1)
|
||||
time.sleep(10)
|
||||
|
||||
# one last time
|
||||
if has_checkpoint(checkpoint_dir):
|
||||
@@ -52,20 +61,26 @@ def wait_for_checkpoint(checkpoint_dir, timeout=10):
|
||||
))
|
||||
|
||||
|
||||
def data_store_ckpt_load(data_store):
|
||||
while True:
|
||||
data_store.load_from_store()
|
||||
time.sleep(10)
|
||||
|
||||
def rollout_worker(graph_manager, checkpoint_dir):
|
||||
"""
|
||||
restore a checkpoint then perform rollouts using the restored model
|
||||
wait for first checkpoint then perform rollouts using the model
|
||||
"""
|
||||
wait_for_checkpoint(checkpoint_dir)
|
||||
|
||||
task_parameters = TaskParameters()
|
||||
task_parameters.__dict__['checkpoint_restore_dir'] = checkpoint_dir
|
||||
time.sleep(30)
|
||||
graph_manager.create_graph(task_parameters)
|
||||
graph_manager.phase = RunPhase.TRAIN
|
||||
|
||||
for i in range(10000000):
|
||||
graph_manager.act(EnvironmentEpisodes(num_steps=10))
|
||||
graph_manager.restore_checkpoint()
|
||||
graph_manager.act(EnvironmentEpisodes(num_steps=10))
|
||||
|
||||
graph_manager.phase = RunPhase.UNDEFINED
|
||||
|
||||
@@ -91,6 +106,9 @@ def main():
|
||||
parser.add_argument('--memory_backend_params',
|
||||
help="(string) JSON string of the memory backend params",
|
||||
type=str)
|
||||
parser.add_argument('--data_store_params',
|
||||
help="(string) JSON string of the data store params",
|
||||
type=str)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -98,9 +116,20 @@ def main():
|
||||
|
||||
if args.memory_backend_params:
|
||||
args.memory_backend_params = json.loads(args.memory_backend_params)
|
||||
if 'run_type' not in args.memory_backend_params:
|
||||
print(args.memory_backend_params)
|
||||
args.memory_backend_params['run_type'] = 'worker'
|
||||
print(construct_memory_params(args.memory_backend_params))
|
||||
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
|
||||
|
||||
if args.data_store_params:
|
||||
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
|
||||
data_store_params.checkpoint_dir = args.checkpoint_dir
|
||||
graph_manager.data_store_params = data_store_params
|
||||
data_store = get_data_store(data_store_params)
|
||||
wait_for_checkpoint(checkpoint_dir=args.checkpoint_dir, data_store=data_store)
|
||||
# thread = Thread(target = data_store_ckpt_load, args = [data_store])
|
||||
# thread.start()
|
||||
|
||||
rollout_worker(
|
||||
graph_manager=graph_manager,
|
||||
checkpoint_dir=args.checkpoint_dir,
|
||||
|
||||
@@ -4,15 +4,19 @@ import argparse
|
||||
import time
|
||||
import json
|
||||
|
||||
from threading import Thread
|
||||
|
||||
from rl_coach.base_parameters import TaskParameters
|
||||
from rl_coach.coach import expand_preset
|
||||
from rl_coach import core_types
|
||||
from rl_coach.utils import short_dynamic_import
|
||||
from rl_coach.memories.backend.memory_impl import construct_memory_params
|
||||
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
|
||||
|
||||
# Q: specify alternative distributed memory, or should this go in the preset?
|
||||
# A: preset must define distributed memory to be used. we aren't going to take a non-distributed preset and automatically distribute it.
|
||||
|
||||
def data_store_ckpt_save(data_store):
|
||||
while True:
|
||||
data_store.save_to_store()
|
||||
time.sleep(10)
|
||||
|
||||
def training_worker(graph_manager, checkpoint_dir):
|
||||
"""
|
||||
@@ -58,16 +62,26 @@ def main():
|
||||
parser.add_argument('--memory_backend_params',
|
||||
help="(string) JSON string of the memory backend params",
|
||||
type=str)
|
||||
parser.add_argument('--data_store_params',
|
||||
help="(string) JSON string of the data store params",
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
|
||||
|
||||
if args.memory_backend_params:
|
||||
args.memory_backend_params = json.loads(args.memory_backend_params)
|
||||
if 'run_type' not in args.memory_backend_params:
|
||||
args.memory_backend_params['run_type'] = 'trainer'
|
||||
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
|
||||
|
||||
if args.data_store_params:
|
||||
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
|
||||
data_store_params.checkpoint_dir = args.checkpoint_dir
|
||||
graph_manager.data_store_params = data_store_params
|
||||
# data_store = get_data_store(data_store_params)
|
||||
# thread = Thread(target = data_store_ckpt_save, args = [data_store])
|
||||
# thread.start()
|
||||
|
||||
training_worker(
|
||||
graph_manager=graph_manager,
|
||||
checkpoint_dir=args.checkpoint_dir,
|
||||
|
||||
Reference in New Issue
Block a user