1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

Make distributed coach work end-to-end.

- With data store, memory backend and orchestrator interfaces.
This commit is contained in:
Balaji Subramaniam
2018-10-04 12:28:21 -07:00
committed by zach dwiel
parent 9f92064e67
commit 844a5af831
8 changed files with 300 additions and 169 deletions

View File

@@ -0,0 +1,15 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

View File

@@ -1,5 +1,6 @@
from rl_coach.data_stores.nfs_data_store import NFSDataStore, NFSDataStoreParameters
from rl_coach.data_stores.s3_data_store import S3DataStore, S3DataStoreParameters
from rl_coach.data_stores.data_store import DataStoreParameters
def get_data_store(params):
@@ -10,3 +11,14 @@ def get_data_store(params):
data_store = S3DataStore(params)
return data_store
def construct_data_store_params(json: dict):
ds_params_instance = None
ds_params = DataStoreParameters(json['store_type'], json['orchestrator_type'], json['orchestrator_params'])
if json['store_type'] == 'nfs':
ds_params_instance = NFSDataStoreParameters(ds_params)
elif json['store_type'] == 's3':
ds_params_instance = S3DataStoreParameters(ds_params=ds_params, end_point=json['end_point'],
bucket_name=json['bucket_name'], checkpoint_dir=json['checkpoint_dir'])
return ds_params_instance

View File

@@ -46,6 +46,7 @@ class S3DataStore(DataStore):
def save_to_store(self):
try:
print("saving to s3")
for root, dirs, files in os.walk(self.params.checkpoint_dir):
for filename in files:
abs_name = os.path.abspath(os.path.join(root, filename))
@@ -56,6 +57,7 @@ class S3DataStore(DataStore):
def load_from_store(self):
try:
print("loading from s3")
objects = self.mc.list_objects_v2(self.params.bucket_name, recursive=True)
for obj in objects:
filename = os.path.abspath(os.path.join(self.params.checkpoint_dir, obj.object_name))

View File

@@ -30,7 +30,12 @@ from rl_coach.core_types import TotalStepsCounter, RunPhase, PlayingStepsType, T
from rl_coach.environments.environment import Environment
from rl_coach.level_manager import LevelManager
from rl_coach.logger import screen, Logger
<<<<<<< HEAD
from rl_coach.utils import set_cpu, start_shell_command_and_wait
=======
from rl_coach.utils import set_cpu
from rl_coach.data_stores.data_store_impl import get_data_store
>>>>>>> Make distributed coach work end-to-end.
class ScheduleParameters(Parameters):
@@ -367,6 +372,11 @@ class GraphManager(object):
"""
self.verify_graph_was_created()
if hasattr(self, 'data_store_params') and hasattr(self.agent_params.memory, 'memory_backend_params'):
if self.agent_params.memory.memory_backend_params.run_type == "worker":
data_store = get_data_store(self.data_store_params)
data_store.load_from_store()
# perform several steps of playing
result = None
@@ -522,6 +532,11 @@ class GraphManager(object):
self.checkpoint_id += 1
self.last_checkpoint_saving_time = time.time()
if hasattr(self, 'data_store_params'):
data_store = get_data_store(self.data_store_params)
data_store.save_to_store()
def improve(self):
"""
The main loop of the run.

View File

@@ -4,9 +4,11 @@ import json
import time
from typing import List
from rl_coach.orchestrators.deploy import Deploy, DeployParameters
from kubernetes import client, config
from kubernetes import client as k8sclient, config as k8sconfig
from rl_coach.memories.backend.memory import MemoryBackendParameters
from rl_coach.memories.backend.memory_impl import get_memory_backend
from rl_coach.data_stores.data_store import DataStoreParameters
from rl_coach.data_stores.data_store_impl import get_data_store
class RunTypeParameters():
@@ -29,8 +31,9 @@ class RunTypeParameters():
class KubernetesParameters(DeployParameters):
def __init__(self, run_type_params: List[RunTypeParameters], kubeconfig: str = None, namespace: str = "", nfs_server: str = None,
nfs_path: str = None, checkpoint_dir: str = '/checkpoint', memory_backend_parameters: MemoryBackendParameters = None):
def __init__(self, run_type_params: List[RunTypeParameters], kubeconfig: str = None, namespace: str = None,
nfs_server: str = None, nfs_path: str = None, checkpoint_dir: str = '/checkpoint',
memory_backend_parameters: MemoryBackendParameters = None, data_store_params: DataStoreParameters = None):
self.run_type_params = {}
for run_type_param in run_type_params:
@@ -41,195 +44,204 @@ class KubernetesParameters(DeployParameters):
self.nfs_path = nfs_path
self.checkpoint_dir = checkpoint_dir
self.memory_backend_parameters = memory_backend_parameters
self.data_store_params = data_store_params
class Kubernetes(Deploy):
def __init__(self, deploy_parameters: KubernetesParameters):
super().__init__(deploy_parameters)
self.deploy_parameters = deploy_parameters
if self.deploy_parameters.kubeconfig:
config.load_kube_config()
def __init__(self, params: KubernetesParameters):
super().__init__(params)
self.params = params
if self.params.kubeconfig:
k8sconfig.load_kube_config()
else:
config.load_incluster_config()
k8sconfig.load_incluster_config()
if not self.params.namespace:
_, current_context = k8sconfig.list_kube_config_contexts()
self.params.namespace = current_context['context']['namespace']
if not self.deploy_parameters.namespace:
_, current_context = config.list_kube_config_contexts()
self.deploy_parameters.namespace = current_context['context']['namespace']
self.nfs_pvc_name = 'nfs-checkpoint-pvc'
if os.environ.get('http_proxy'):
client.Configuration._default.proxy = os.environ.get('http_proxy')
k8sclient.Configuration._default.proxy = os.environ.get('http_proxy')
self.deploy_parameters.memory_backend_parameters.orchestrator_params = {'namespace': self.deploy_parameters.namespace}
self.memory_backend = get_memory_backend(self.deploy_parameters.memory_backend_parameters)
self.params.memory_backend_parameters.orchestrator_params = {'namespace': self.params.namespace}
self.memory_backend = get_memory_backend(self.params.memory_backend_parameters)
self.params.data_store_params.orchestrator_params = {'namespace': self.params.namespace}
self.data_store = get_data_store(self.params.data_store_params)
if self.params.data_store_params.store_type == "s3":
self.s3_access_key = None
self.s3_secret_key = None
if self.params.data_store_params.creds_file:
s3config = ConfigParser()
s3config.read(self.params.data_store_params.creds_file)
try:
self.s3_access_key = s3config.get('default', 'aws_access_key_id')
self.s3_secret_key = s3config.get('default', 'aws_secret_access_key')
except Error as e:
print("Error when reading S3 credentials file: %s", e)
else:
self.s3_access_key = os.environ.get('ACCESS_KEY_ID')
self.s3_secret_key = os.environ.get('SECRET_ACCESS_KEY')
def setup(self) -> bool:
self.memory_backend.deploy()
if not self.create_nfs_resources():
return False
return True
def create_nfs_resources(self):
persistent_volume = client.V1PersistentVolume(
api_version="v1",
kind="PersistentVolume",
metadata=client.V1ObjectMeta(
name='nfs-checkpoint-pv',
labels={'app': 'nfs-checkpoint-pv'}
),
spec=client.V1PersistentVolumeSpec(
access_modes=["ReadWriteMany"],
nfs=client.V1NFSVolumeSource(
path=self.deploy_parameters.nfs_path,
server=self.deploy_parameters.nfs_server
),
capacity={'storage': '10Gi'},
storage_class_name=""
)
)
api_client = client.CoreV1Api()
try:
api_client.create_persistent_volume(persistent_volume)
except client.rest.ApiException as e:
print("Got exception: %s\n while creating the NFS PV", e)
return False
persistent_volume_claim = client.V1PersistentVolumeClaim(
api_version="v1",
kind="PersistentVolumeClaim",
metadata=client.V1ObjectMeta(
name="nfs-checkpoint-pvc"
),
spec=client.V1PersistentVolumeClaimSpec(
access_modes=["ReadWriteMany"],
resources=client.V1ResourceRequirements(
requests={'storage': '10Gi'}
),
selector=client.V1LabelSelector(
match_labels={'app': 'nfs-checkpoint-pv'}
),
storage_class_name=""
)
)
try:
api_client.create_namespaced_persistent_volume_claim(self.deploy_parameters.namespace, persistent_volume_claim)
except client.rest.ApiException as e:
print("Got exception: %s\n while creating the NFS PVC", e)
if not self.data_store.deploy():
return False
return True
def deploy_trainer(self) -> bool:
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
trainer_params = self.params.run_type_params.get('trainer', None)
if not trainer_params:
return False
trainer_params.command += ['--memory_backend_params', json.dumps(self.deploy_parameters.memory_backend_parameters.__dict__)]
trainer_params.command += ['--memory_backend_params', json.dumps(self.params.memory_backend_parameters.__dict__)]
trainer_params.command += ['--data_store_params', json.dumps(self.params.data_store_params.__dict__)]
name = "{}-{}".format(trainer_params.run_type, uuid.uuid4())
container = client.V1Container(
if self.params.data_store_params.store_type == "nfs":
container = k8sclient.V1Container(
name=name,
image=trainer_params.image,
command=trainer_params.command,
args=trainer_params.arguments,
image_pull_policy='Always',
volume_mounts=[client.V1VolumeMount(
volume_mounts=[k8sclient.V1VolumeMount(
name='nfs-pvc',
mount_path=trainer_params.checkpoint_dir
)]
)
template = client.V1PodTemplateSpec(
metadata=client.V1ObjectMeta(labels={'app': name}),
spec=client.V1PodSpec(
template = k8sclient.V1PodTemplateSpec(
metadata=k8sclient.V1ObjectMeta(labels={'app': name}),
spec=k8sclient.V1PodSpec(
containers=[container],
volumes=[client.V1Volume(
volumes=[k8sclient.V1Volume(
name="nfs-pvc",
persistent_volume_claim=client.V1PersistentVolumeClaimVolumeSource(
persistent_volume_claim=k8sclient.V1PersistentVolumeClaimVolumeSource(
claim_name=self.nfs_pvc_name
)
)]
),
)
deployment_spec = client.V1DeploymentSpec(
else:
container = k8sclient.V1Container(
name=name,
image=trainer_params.image,
command=trainer_params.command,
args=trainer_params.arguments,
image_pull_policy='Always',
env=[k8sclient.V1EnvVar("ACCESS_KEY_ID", self.s3_access_key),
k8sclient.V1EnvVar("SECRET_ACCESS_KEY", self.s3_secret_key)]
)
template = k8sclient.V1PodTemplateSpec(
metadata=k8sclient.V1ObjectMeta(labels={'app': name}),
spec=k8sclient.V1PodSpec(
containers=[container]
),
)
deployment_spec = k8sclient.V1DeploymentSpec(
replicas=trainer_params.num_replicas,
template=template,
selector=client.V1LabelSelector(
selector=k8sclient.V1LabelSelector(
match_labels={'app': name}
)
)
deployment = client.V1Deployment(
deployment = k8sclient.V1Deployment(
api_version='apps/v1',
kind='Deployment',
metadata=client.V1ObjectMeta(name=name),
metadata=k8sclient.V1ObjectMeta(name=name),
spec=deployment_spec
)
api_client = client.AppsV1Api()
api_client = k8sclient.AppsV1Api()
try:
api_client.create_namespaced_deployment(self.deploy_parameters.namespace, deployment)
api_client.create_namespaced_deployment(self.params.namespace, deployment)
trainer_params.orchestration_params['deployment_name'] = name
return True
except client.rest.ApiException as e:
except k8sclient.rest.ApiException as e:
print("Got exception: %s\n while creating deployment", e)
return False
def deploy_worker(self):
worker_params = self.deploy_parameters.run_type_params.get('worker', None)
worker_params = self.params.run_type_params.get('worker', None)
if not worker_params:
return False
worker_params.command += ['--memory_backend_params', json.dumps(self.deploy_parameters.memory_backend_parameters.__dict__)]
worker_params.command += ['--memory_backend_params', json.dumps(self.params.memory_backend_parameters.__dict__)]
worker_params.command += ['--data_store_params', json.dumps(self.params.data_store_params.__dict__)]
name = "{}-{}".format(worker_params.run_type, uuid.uuid4())
container = client.V1Container(
if self.params.data_store_params.store_type == "nfs":
container = k8sclient.V1Container(
name=name,
image=worker_params.image,
command=worker_params.command,
args=worker_params.arguments,
image_pull_policy='Always',
volume_mounts=[client.V1VolumeMount(
volume_mounts=[k8sclient.V1VolumeMount(
name='nfs-pvc',
mount_path=worker_params.checkpoint_dir
)]
)
template = client.V1PodTemplateSpec(
metadata=client.V1ObjectMeta(labels={'app': name}),
spec=client.V1PodSpec(
template = k8sclient.V1PodTemplateSpec(
metadata=k8sclient.V1ObjectMeta(labels={'app': name}),
spec=k8sclient.V1PodSpec(
containers=[container],
volumes=[client.V1Volume(
volumes=[k8sclient.V1Volume(
name="nfs-pvc",
persistent_volume_claim=client.V1PersistentVolumeClaimVolumeSource(
persistent_volume_claim=k8sclient.V1PersistentVolumeClaimVolumeSource(
claim_name=self.nfs_pvc_name
)
)],
),
)
else:
container = k8sclient.V1Container(
name=name,
image=worker_params.image,
command=worker_params.command,
args=worker_params.arguments,
image_pull_policy='Always',
env=[k8sclient.V1EnvVar("ACCESS_KEY_ID", self.s3_access_key),
k8sclient.V1EnvVar("SECRET_ACCESS_KEY", self.s3_secret_key)]
)
template = k8sclient.V1PodTemplateSpec(
metadata=k8sclient.V1ObjectMeta(labels={'app': name}),
spec=k8sclient.V1PodSpec(
containers=[container]
)
)
deployment_spec = client.V1DeploymentSpec(
deployment_spec = k8sclient.V1DeploymentSpec(
replicas=worker_params.num_replicas,
template=template,
selector=client.V1LabelSelector(
selector=k8sclient.V1LabelSelector(
match_labels={'app': name}
)
)
deployment = client.V1Deployment(
deployment = k8sclient.V1Deployment(
api_version='apps/v1',
kind="Deployment",
metadata=client.V1ObjectMeta(name=name),
metadata=k8sclient.V1ObjectMeta(name=name),
spec=deployment_spec
)
api_client = client.AppsV1Api()
api_client = k8sclient.AppsV1Api()
try:
api_client.create_namespaced_deployment(self.deploy_parameters.namespace, deployment)
api_client.create_namespaced_deployment(self.params.namespace, deployment)
worker_params.orchestration_params['deployment_name'] = name
return True
except client.rest.ApiException as e:
except k8sclient.rest.ApiException as e:
print("Got exception: %s\n while creating deployment", e)
return False
@@ -237,19 +249,19 @@ class Kubernetes(Deploy):
pass
def trainer_logs(self):
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
trainer_params = self.params.run_type_params.get('trainer', None)
if not trainer_params:
return
api_client = client.CoreV1Api()
api_client = k8sclient.CoreV1Api()
pod = None
try:
pods = api_client.list_namespaced_pod(self.deploy_parameters.namespace, label_selector='app={}'.format(
pods = api_client.list_namespaced_pod(self.params.namespace, label_selector='app={}'.format(
trainer_params.orchestration_params['deployment_name']
))
pod = pods.items[0]
except client.rest.ApiException as e:
except k8sclient.rest.ApiException as e:
print("Got exception: %s\n while reading pods", e)
return
@@ -264,17 +276,17 @@ class Kubernetes(Deploy):
# Try to tail the pod logs
try:
print(corev1_api.read_namespaced_pod_log(
pod_name, self.deploy_parameters.namespace, follow=True
pod_name, self.params.namespace, follow=True
), flush=True)
except client.rest.ApiException as e:
except k8sclient.rest.ApiException as e:
pass
# This part will get executed if the pod is one of the following phases: not ready, failed or terminated.
# Check if the pod has errored out, else just try again.
# Get the pod
try:
pod = corev1_api.read_namespaced_pod(pod_name, self.deploy_parameters.namespace)
except client.rest.ApiException as e:
pod = corev1_api.read_namespaced_pod(pod_name, self.params.namespace)
except k8sclient.rest.ApiException as e:
continue
if not hasattr(pod, 'status') or not pod.status:
@@ -293,18 +305,19 @@ class Kubernetes(Deploy):
return
def undeploy(self):
trainer_params = self.deploy_parameters.run_type_params.get('trainer', None)
api_client = client.AppsV1Api()
delete_options = client.V1DeleteOptions()
trainer_params = self.params.run_type_params.get('trainer', None)
api_client = k8sclient.AppsV1Api()
delete_options = k8sclient.V1DeleteOptions()
if trainer_params:
try:
api_client.delete_namespaced_deployment(trainer_params.orchestration_params['deployment_name'], self.deploy_parameters.namespace, delete_options)
except client.rest.ApiException as e:
api_client.delete_namespaced_deployment(trainer_params.orchestration_params['deployment_name'], self.params.namespace, delete_options)
except k8sclient.rest.ApiException as e:
print("Got exception: %s\n while deleting trainer", e)
worker_params = self.deploy_parameters.run_type_params.get('worker', None)
worker_params = self.params.run_type_params.get('worker', None)
if worker_params:
try:
api_client.delete_namespaced_deployment(worker_params.orchestration_params['deployment_name'], self.deploy_parameters.namespace, delete_options)
except client.rest.ApiException as e:
api_client.delete_namespaced_deployment(worker_params.orchestration_params['deployment_name'], self.params.namespace, delete_options)
except k8sclient.rest.ApiException as e:
print("Got exception: %s\n while deleting workers", e)
self.memory_backend.undeploy()
self.data_store.undeploy()

View File

@@ -2,19 +2,36 @@ import argparse
from rl_coach.orchestrators.kubernetes_orchestrator import KubernetesParameters, Kubernetes, RunTypeParameters
from rl_coach.memories.backend.redis import RedisPubSubMemoryBackendParameters
from rl_coach.data_stores.data_store import DataStoreParameters
from rl_coach.data_stores.s3_data_store import S3DataStoreParameters
from rl_coach.data_stores.nfs_data_store import NFSDataStoreParameters
def main(preset: str, image: str='ajaysudh/testing:coach', num_workers: int=1, nfs_server: str="", nfs_path: str="", memory_backend: str=""):
def main(preset: str, image: str='ajaysudh/testing:coach', num_workers: int=1, nfs_server: str=None, nfs_path: str=None,
memory_backend: str=None, data_store: str=None, s3_end_point: str=None, s3_bucket_name: str=None):
rollout_command = ['python3', 'rl_coach/rollout_worker.py', '-p', preset]
training_command = ['python3', 'rl_coach/training_worker.py', '-p', preset]
memory_backend_params = None
if memory_backend == "redispubsub":
memory_backend_params = RedisPubSubMemoryBackendParameters()
ds_params_instance = None
if data_store == "s3":
ds_params = DataStoreParameters("s3", "", "")
ds_params_instance = S3DataStoreParameters(ds_params=ds_params, end_point=s3_end_point, bucket_name=s3_bucket_name,
checkpoint_dir="/checkpoint")
elif data_store == "nfs":
ds_params = DataStoreParameters("nfs", "kubernetes", {"namespace": "default"})
ds_params_instance = NFSDataStoreParameters(ds_params)
worker_run_type_params = RunTypeParameters(image, rollout_command, run_type="worker")
trainer_run_type_params = RunTypeParameters(image, training_command, run_type="trainer")
orchestration_params = KubernetesParameters([worker_run_type_params, trainer_run_type_params], kubeconfig='~/.kube/config', nfs_server=nfs_server,
nfs_path=nfs_path, memory_backend_parameters=memory_backend_params)
orchestration_params = KubernetesParameters([worker_run_type_params, trainer_run_type_params],
kubeconfig='~/.kube/config', nfs_server=nfs_server, nfs_path=nfs_path,
memory_backend_parameters=memory_backend_params,
data_store_params=ds_params_instance)
orchestrator = Kubernetes(orchestration_params)
if not orchestrator.setup():
print("Could not setup")
@@ -36,7 +53,7 @@ def main(preset: str, image: str='ajaysudh/testing:coach', num_workers: int=1, n
orchestrator.trainer_logs()
except KeyboardInterrupt:
pass
orchestrator.undeploy()
# orchestrator.undeploy()
if __name__ == '__main__':
@@ -46,21 +63,33 @@ if __name__ == '__main__':
type=str,
required=True)
parser.add_argument('-p', '--preset',
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
help="(string) Name of a preset to run (class name from the 'presets' directory).",
type=str,
required=True)
parser.add_argument('--memory-backend',
help="(string) Memory backend to use.",
type=str,
default="redispubsub")
parser.add_argument('-ds', '--data-store',
help="(string) Data store to use.",
type=str,
default="s3")
parser.add_argument('-ns', '--nfs-server',
help="(string) Addresss of the nfs server.)",
help="(string) Addresss of the nfs server.",
type=str,
required=True)
parser.add_argument('-np', '--nfs-path',
help="(string) Exported path for the nfs server",
help="(string) Exported path for the nfs server.",
type=str,
required=True)
parser.add_argument('--memory_backend',
help="(string) Memory backend to use",
parser.add_argument('--s3-end-point',
help="(string) S3 endpoint to use when S3 data store is used.",
type=str,
default="redispubsub")
required=True)
parser.add_argument('--s3-bucket-name',
help="(string) S3 bucket name to use when S3 data store is used.",
type=str,
required=True)
# parser.add_argument('--checkpoint_dir',
# help='(string) Path to a folder containing a checkpoint to write the model to.',
@@ -68,4 +97,6 @@ if __name__ == '__main__':
# default='/checkpoint')
args = parser.parse_args()
main(preset=args.preset, image=args.image, nfs_server=args.nfs_server, nfs_path=args.nfs_path, memory_backend=args.memory_backend)
main(preset=args.preset, image=args.image, nfs_server=args.nfs_server, nfs_path=args.nfs_path,
memory_backend=args.memory_backend, data_store=args.data_store, s3_end_point=args.s3_end_point,
s3_bucket_name=args.s3_bucket_name)

View File

@@ -12,11 +12,14 @@ import time
import os
import json
from threading import Thread
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach.core_types import EnvironmentEpisodes, RunPhase
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.backend.memory_impl import construct_memory_params
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
# Q: specify alternative distributed memory, or should this go in the preset?
@@ -27,17 +30,23 @@ def has_checkpoint(checkpoint_dir):
"""
True if a checkpoint is present in checkpoint_dir
"""
return len(os.listdir(checkpoint_dir)) > 0
if os.path.isdir(checkpoint_dir):
if len(os.listdir(checkpoint_dir)) > 0:
return os.path.isfile(os.path.join(checkpoint_dir, "checkpoint"))
return False
def wait_for_checkpoint(checkpoint_dir, timeout=10):
def wait_for_checkpoint(checkpoint_dir, data_store=None, timeout=10):
"""
block until there is a checkpoint in checkpoint_dir
"""
for i in range(timeout):
if data_store:
data_store.load_from_store()
if has_checkpoint(checkpoint_dir):
return
time.sleep(1)
time.sleep(10)
# one last time
if has_checkpoint(checkpoint_dir):
@@ -52,20 +61,26 @@ def wait_for_checkpoint(checkpoint_dir, timeout=10):
))
def data_store_ckpt_load(data_store):
while True:
data_store.load_from_store()
time.sleep(10)
def rollout_worker(graph_manager, checkpoint_dir):
"""
restore a checkpoint then perform rollouts using the restored model
wait for first checkpoint then perform rollouts using the model
"""
wait_for_checkpoint(checkpoint_dir)
task_parameters = TaskParameters()
task_parameters.__dict__['checkpoint_restore_dir'] = checkpoint_dir
time.sleep(30)
graph_manager.create_graph(task_parameters)
graph_manager.phase = RunPhase.TRAIN
for i in range(10000000):
graph_manager.act(EnvironmentEpisodes(num_steps=10))
graph_manager.restore_checkpoint()
graph_manager.act(EnvironmentEpisodes(num_steps=10))
graph_manager.phase = RunPhase.UNDEFINED
@@ -91,6 +106,9 @@ def main():
parser.add_argument('--memory_backend_params',
help="(string) JSON string of the memory backend params",
type=str)
parser.add_argument('--data_store_params',
help="(string) JSON string of the data store params",
type=str)
args = parser.parse_args()
@@ -98,9 +116,20 @@ def main():
if args.memory_backend_params:
args.memory_backend_params = json.loads(args.memory_backend_params)
if 'run_type' not in args.memory_backend_params:
print(args.memory_backend_params)
args.memory_backend_params['run_type'] = 'worker'
print(construct_memory_params(args.memory_backend_params))
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
if args.data_store_params:
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
data_store_params.checkpoint_dir = args.checkpoint_dir
graph_manager.data_store_params = data_store_params
data_store = get_data_store(data_store_params)
wait_for_checkpoint(checkpoint_dir=args.checkpoint_dir, data_store=data_store)
# thread = Thread(target = data_store_ckpt_load, args = [data_store])
# thread.start()
rollout_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,

View File

@@ -4,15 +4,19 @@ import argparse
import time
import json
from threading import Thread
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach import core_types
from rl_coach.utils import short_dynamic_import
from rl_coach.memories.backend.memory_impl import construct_memory_params
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
# Q: specify alternative distributed memory, or should this go in the preset?
# A: preset must define distributed memory to be used. we aren't going to take a non-distributed preset and automatically distribute it.
def data_store_ckpt_save(data_store):
while True:
data_store.save_to_store()
time.sleep(10)
def training_worker(graph_manager, checkpoint_dir):
"""
@@ -58,16 +62,26 @@ def main():
parser.add_argument('--memory_backend_params',
help="(string) JSON string of the memory backend params",
type=str)
parser.add_argument('--data_store_params',
help="(string) JSON string of the data store params",
type=str)
args = parser.parse_args()
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
if args.memory_backend_params:
args.memory_backend_params = json.loads(args.memory_backend_params)
if 'run_type' not in args.memory_backend_params:
args.memory_backend_params['run_type'] = 'trainer'
graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params))
if args.data_store_params:
data_store_params = construct_data_store_params(json.loads(args.data_store_params))
data_store_params.checkpoint_dir = args.checkpoint_dir
graph_manager.data_store_params = data_store_params
# data_store = get_data_store(data_store_params)
# thread = Thread(target = data_store_ckpt_save, args = [data_store])
# thread.start()
training_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,