mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 03:30:19 +01:00
temp commit
This commit is contained in:
@@ -20,6 +20,17 @@ from utils import *
|
||||
import scipy.signal
|
||||
|
||||
|
||||
def last_sample(state):
|
||||
"""
|
||||
given a batch of states, return the last sample of the batch with length 1
|
||||
batch axis.
|
||||
"""
|
||||
return {
|
||||
k: np.expand_dims(v[-1], 0)
|
||||
for k, v in state.items()
|
||||
}
|
||||
|
||||
|
||||
# Actor Critic - https://arxiv.org/abs/1602.01783
|
||||
class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network = False):
|
||||
@@ -76,7 +87,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
if game_overs[-1]:
|
||||
R = 0
|
||||
else:
|
||||
R = self.main_network.online_network.predict(np.expand_dims(next_states[-1], 0))[0]
|
||||
R = self.main_network.online_network.predict(last_sample(next_states))[0]
|
||||
|
||||
for i in reversed(range(num_transitions)):
|
||||
R = rewards[i] + self.tp.agent.discount * R
|
||||
@@ -85,7 +96,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
|
||||
# get bootstraps
|
||||
bootstrapped_value = self.main_network.online_network.predict(np.expand_dims(next_states[-1], 0))[0]
|
||||
bootstrapped_value = self.main_network.online_network.predict(last_sample(next_states))[0]
|
||||
values = np.append(current_state_values, bootstrapped_value)
|
||||
if game_overs[-1]:
|
||||
values[-1] = 0
|
||||
@@ -101,7 +112,9 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
actions = np.expand_dims(actions, -1)
|
||||
|
||||
# train
|
||||
result = self.main_network.online_network.accumulate_gradients([current_states, actions],
|
||||
inputs = copy.copy(current_states)
|
||||
inputs['output_1_0'] = actions
|
||||
result = self.main_network.online_network.accumulate_gradients(inputs,
|
||||
[state_value_head_targets, action_advantages])
|
||||
|
||||
# logging
|
||||
@@ -114,11 +127,17 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
# TODO: rename curr_state -> state
|
||||
|
||||
# convert to batch so we can run it through the network
|
||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||
curr_state = {
|
||||
k: np.expand_dims(np.array(curr_state[k]), 0)
|
||||
for k in curr_state.keys()
|
||||
}
|
||||
|
||||
if self.env.discrete_controls:
|
||||
# DISCRETE
|
||||
state_value, action_probabilities = self.main_network.online_network.predict(observation)
|
||||
state_value, action_probabilities = self.main_network.online_network.predict(curr_state)
|
||||
action_probabilities = action_probabilities.squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_probabilities)
|
||||
@@ -128,7 +147,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
self.entropy.add_sample(-np.sum(action_probabilities * np.log(action_probabilities + eps)))
|
||||
else:
|
||||
# CONTINUOUS
|
||||
state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(observation)
|
||||
state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(curr_state)
|
||||
action_values_mean = action_values_mean.squeeze()
|
||||
action_values_std = action_values_std.squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
|
||||
@@ -93,7 +93,7 @@ class Agent(object):
|
||||
self.running_reward = None
|
||||
self.training_iteration = 0
|
||||
self.current_episode = self.tp.current_episode = 0
|
||||
self.curr_state = []
|
||||
self.curr_state = {}
|
||||
self.current_episode_steps_counter = 0
|
||||
self.episode_running_info = {}
|
||||
self.last_episode_evaluation_ran = 0
|
||||
@@ -194,7 +194,7 @@ class Agent(object):
|
||||
for signal in self.signals:
|
||||
signal.reset()
|
||||
self.total_reward_in_current_episode = 0
|
||||
self.curr_state = []
|
||||
self.curr_state = {}
|
||||
self.last_episode_images = []
|
||||
self.current_episode_steps_counter = 0
|
||||
self.episode_running_info = {}
|
||||
@@ -289,23 +289,20 @@ class Agent(object):
|
||||
:param batch: An array of transitions
|
||||
:return: For each transition element, returns a numpy array of all the transitions in the batch
|
||||
"""
|
||||
current_states = {}
|
||||
next_states = {}
|
||||
|
||||
current_observations = np.array([transition.state['observation'] for transition in batch])
|
||||
next_observations = np.array([transition.next_state['observation'] for transition in batch])
|
||||
current_states['observation'] = np.array([transition.state['observation'] for transition in batch])
|
||||
next_states['observation'] = np.array([transition.next_state['observation'] for transition in batch])
|
||||
actions = np.array([transition.action for transition in batch])
|
||||
rewards = np.array([transition.reward for transition in batch])
|
||||
game_overs = np.array([transition.game_over for transition in batch])
|
||||
total_return = np.array([transition.total_return for transition in batch])
|
||||
|
||||
current_states = current_observations
|
||||
next_states = next_observations
|
||||
|
||||
# get the entire state including measurements if available
|
||||
if self.tp.agent.use_measurements:
|
||||
current_measurements = np.array([transition.state['measurements'] for transition in batch])
|
||||
next_measurements = np.array([transition.next_state['measurements'] for transition in batch])
|
||||
current_states = [current_observations, current_measurements]
|
||||
next_states = [next_observations, next_measurements]
|
||||
current_states['measurements'] = np.array([transition.state['measurements'] for transition in batch])
|
||||
next_states['measurements'] = np.array([transition.next_state['measurements'] for transition in batch])
|
||||
|
||||
return current_states, next_states, actions, rewards, game_overs, total_return
|
||||
|
||||
@@ -353,12 +350,24 @@ class Agent(object):
|
||||
|
||||
# get new action
|
||||
action_info = {"action_probability": 1.0 / self.env.action_space_size, "action_value": 0}
|
||||
is_first_transition_in_episode = (self.curr_state == [])
|
||||
is_first_transition_in_episode = (self.curr_state == {})
|
||||
if is_first_transition_in_episode:
|
||||
observation = self.preprocess_observation(self.env.observation)
|
||||
observation = stack_observation([], observation, self.tp.env.observation_stack_size)
|
||||
if not isinstance(self.env.state, dict):
|
||||
raise ValueError((
|
||||
'expected state to be a dictionary, found {}'
|
||||
).format(type(self.env.state)))
|
||||
|
||||
self.curr_state = {'observation': observation}
|
||||
state = self.env.state
|
||||
# TODO: modify preprocess_observation to modify the entire state
|
||||
# for now, only preprocess the observation
|
||||
state['observation'] = self.preprocess_observation(state['observation'])
|
||||
|
||||
# TODO: provide option to stack more than just the observation
|
||||
# TODO: this should probably be happening in an environment wrapper anyway
|
||||
state['observation'] = stack_observation([], state['observation'], self.tp.env.observation_stack_size)
|
||||
|
||||
self.curr_state = state
|
||||
# TODO: this should be handled in the environment
|
||||
if self.tp.agent.use_measurements:
|
||||
self.curr_state['measurements'] = self.env.measurements
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
@@ -373,22 +382,25 @@ class Agent(object):
|
||||
if type(action) == np.ndarray:
|
||||
action = action.squeeze()
|
||||
result = self.env.step(action)
|
||||
|
||||
shaped_reward = self.preprocess_reward(result['reward'])
|
||||
if 'action_intrinsic_reward' in action_info.keys():
|
||||
shaped_reward += action_info['action_intrinsic_reward']
|
||||
# TODO: should total_reward_in_current_episode include shaped_reward?
|
||||
self.total_reward_in_current_episode += result['reward']
|
||||
observation = self.preprocess_observation(result['observation'])
|
||||
next_state = result['state']
|
||||
next_state['observation'] = self.preprocess_observation(next_state['observation'])
|
||||
|
||||
# plot action values online
|
||||
if self.tp.visualization.plot_action_values_online and phase != RunPhase.HEATUP:
|
||||
self.plot_action_values_online()
|
||||
|
||||
# initialize the next state
|
||||
observation = stack_observation(self.curr_state['observation'], observation, self.tp.env.observation_stack_size)
|
||||
# TODO: provide option to stack more than just the observation
|
||||
next_state['observation'] = stack_observation(self.curr_state['observation'], next_state['observation'], self.tp.env.observation_stack_size)
|
||||
|
||||
next_state = {'observation': observation}
|
||||
if self.tp.agent.use_measurements and 'measurements' in result.keys():
|
||||
next_state['measurements'] = result['measurements']
|
||||
next_state['measurements'] = result['state']['measurements']
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
next_state['measurements'] = np.append(next_state['measurements'], self.total_reward_in_current_episode)
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
||||
Reference in New Issue
Block a user