mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
temp commit
This commit is contained in:
@@ -20,6 +20,17 @@ from utils import *
|
||||
import scipy.signal
|
||||
|
||||
|
||||
def last_sample(state):
|
||||
"""
|
||||
given a batch of states, return the last sample of the batch with length 1
|
||||
batch axis.
|
||||
"""
|
||||
return {
|
||||
k: np.expand_dims(v[-1], 0)
|
||||
for k, v in state.items()
|
||||
}
|
||||
|
||||
|
||||
# Actor Critic - https://arxiv.org/abs/1602.01783
|
||||
class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network = False):
|
||||
@@ -76,7 +87,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
if game_overs[-1]:
|
||||
R = 0
|
||||
else:
|
||||
R = self.main_network.online_network.predict(np.expand_dims(next_states[-1], 0))[0]
|
||||
R = self.main_network.online_network.predict(last_sample(next_states))[0]
|
||||
|
||||
for i in reversed(range(num_transitions)):
|
||||
R = rewards[i] + self.tp.agent.discount * R
|
||||
@@ -85,7 +96,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
|
||||
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
|
||||
# get bootstraps
|
||||
bootstrapped_value = self.main_network.online_network.predict(np.expand_dims(next_states[-1], 0))[0]
|
||||
bootstrapped_value = self.main_network.online_network.predict(last_sample(next_states))[0]
|
||||
values = np.append(current_state_values, bootstrapped_value)
|
||||
if game_overs[-1]:
|
||||
values[-1] = 0
|
||||
@@ -101,7 +112,9 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
actions = np.expand_dims(actions, -1)
|
||||
|
||||
# train
|
||||
result = self.main_network.online_network.accumulate_gradients([current_states, actions],
|
||||
inputs = copy.copy(current_states)
|
||||
inputs['output_1_0'] = actions
|
||||
result = self.main_network.online_network.accumulate_gradients(inputs,
|
||||
[state_value_head_targets, action_advantages])
|
||||
|
||||
# logging
|
||||
@@ -114,11 +127,17 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
# TODO: rename curr_state -> state
|
||||
|
||||
# convert to batch so we can run it through the network
|
||||
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
||||
curr_state = {
|
||||
k: np.expand_dims(np.array(curr_state[k]), 0)
|
||||
for k in curr_state.keys()
|
||||
}
|
||||
|
||||
if self.env.discrete_controls:
|
||||
# DISCRETE
|
||||
state_value, action_probabilities = self.main_network.online_network.predict(observation)
|
||||
state_value, action_probabilities = self.main_network.online_network.predict(curr_state)
|
||||
action_probabilities = action_probabilities.squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(action_probabilities)
|
||||
@@ -128,7 +147,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
|
||||
self.entropy.add_sample(-np.sum(action_probabilities * np.log(action_probabilities + eps)))
|
||||
else:
|
||||
# CONTINUOUS
|
||||
state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(observation)
|
||||
state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(curr_state)
|
||||
action_values_mean = action_values_mean.squeeze()
|
||||
action_values_std = action_values_std.squeeze()
|
||||
if phase == RunPhase.TRAIN:
|
||||
|
||||
Reference in New Issue
Block a user