1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

temp commit

This commit is contained in:
Zach Dwiel
2018-02-16 09:35:58 -05:00
parent 16c5032735
commit 85afb86893
14 changed files with 244 additions and 127 deletions

View File

@@ -20,6 +20,17 @@ from utils import *
import scipy.signal
def last_sample(state):
"""
given a batch of states, return the last sample of the batch with length 1
batch axis.
"""
return {
k: np.expand_dims(v[-1], 0)
for k, v in state.items()
}
# Actor Critic - https://arxiv.org/abs/1602.01783
class ActorCriticAgent(PolicyOptimizationAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network = False):
@@ -76,7 +87,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
if game_overs[-1]:
R = 0
else:
R = self.main_network.online_network.predict(np.expand_dims(next_states[-1], 0))[0]
R = self.main_network.online_network.predict(last_sample(next_states))[0]
for i in reversed(range(num_transitions)):
R = rewards[i] + self.tp.agent.discount * R
@@ -85,7 +96,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
# get bootstraps
bootstrapped_value = self.main_network.online_network.predict(np.expand_dims(next_states[-1], 0))[0]
bootstrapped_value = self.main_network.online_network.predict(last_sample(next_states))[0]
values = np.append(current_state_values, bootstrapped_value)
if game_overs[-1]:
values[-1] = 0
@@ -101,7 +112,9 @@ class ActorCriticAgent(PolicyOptimizationAgent):
actions = np.expand_dims(actions, -1)
# train
result = self.main_network.online_network.accumulate_gradients([current_states, actions],
inputs = copy.copy(current_states)
inputs['output_1_0'] = actions
result = self.main_network.online_network.accumulate_gradients(inputs,
[state_value_head_targets, action_advantages])
# logging
@@ -114,11 +127,17 @@ class ActorCriticAgent(PolicyOptimizationAgent):
return total_loss
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
# TODO: rename curr_state -> state
# convert to batch so we can run it through the network
observation = np.expand_dims(np.array(curr_state['observation']), 0)
curr_state = {
k: np.expand_dims(np.array(curr_state[k]), 0)
for k in curr_state.keys()
}
if self.env.discrete_controls:
# DISCRETE
state_value, action_probabilities = self.main_network.online_network.predict(observation)
state_value, action_probabilities = self.main_network.online_network.predict(curr_state)
action_probabilities = action_probabilities.squeeze()
if phase == RunPhase.TRAIN:
action = self.exploration_policy.get_action(action_probabilities)
@@ -128,7 +147,7 @@ class ActorCriticAgent(PolicyOptimizationAgent):
self.entropy.add_sample(-np.sum(action_probabilities * np.log(action_probabilities + eps)))
else:
# CONTINUOUS
state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(observation)
state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(curr_state)
action_values_mean = action_values_mean.squeeze()
action_values_std = action_values_std.squeeze()
if phase == RunPhase.TRAIN: