mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
Removed tensorflow specific code in presets (#59)
* Add generic layer specification for using in presets * Modify presets to use the generic scheme
This commit is contained in:
committed by
Gal Leibovich
parent
811152126c
commit
93571306c3
78
rl_coach/architectures/layers.py
Normal file
78
rl_coach/architectures/layers.py
Normal file
@@ -0,0 +1,78 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
"""
|
||||
Module implementing base classes for common network layers used by preset schemes
|
||||
"""
|
||||
|
||||
|
||||
class Conv2d(object):
|
||||
"""
|
||||
Base class for framework specfic Conv2d layer
|
||||
"""
|
||||
def __init__(self, num_filters: int, kernel_size: int, strides: int):
|
||||
self.num_filters = num_filters
|
||||
self.kernel_size = kernel_size
|
||||
self.strides = strides
|
||||
|
||||
def __str__(self):
|
||||
return "Convolution (num filters = {}, kernel size = {}, stride = {})"\
|
||||
.format(self.num_filters, self.kernel_size, self.strides)
|
||||
|
||||
|
||||
class BatchnormActivationDropout(object):
|
||||
"""
|
||||
Base class for framework specific batchnorm->activation->dropout layer group
|
||||
"""
|
||||
def __init__(self, batchnorm: bool=False, activation_function: str=None, dropout_rate: float=0):
|
||||
self.batchnorm = batchnorm
|
||||
self.activation_function = activation_function
|
||||
self.dropout_rate = dropout_rate
|
||||
|
||||
def __str__(self):
|
||||
result = []
|
||||
if self.batchnorm:
|
||||
result += ["Batch Normalization"]
|
||||
if self.activation_function:
|
||||
result += ["Activation (type = {})".format(self.activation_function)]
|
||||
if self.dropout_rate > 0:
|
||||
result += ["Dropout (rate = {})".format(self.dropout_rate)]
|
||||
return "\n".join(result)
|
||||
|
||||
|
||||
class Dense(object):
|
||||
"""
|
||||
Base class for framework specific Dense layer
|
||||
"""
|
||||
def __init__(self, units: int):
|
||||
self.units = units
|
||||
|
||||
def __str__(self):
|
||||
return "Dense (num outputs = {})".format(self.units)
|
||||
|
||||
|
||||
class NoisyNetDense(object):
|
||||
"""
|
||||
Base class for framework specific factorized Noisy Net layer
|
||||
|
||||
https://arxiv.org/abs/1706.10295.
|
||||
"""
|
||||
|
||||
def __init__(self, units: int):
|
||||
self.units = units
|
||||
self.sigma0 = 0.5
|
||||
|
||||
def __str__(self):
|
||||
return "Noisy Dense (num outputs = {})".format(self.units)
|
||||
Reference in New Issue
Block a user