1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

Removed tensorflow specific code in presets (#59)

* Add generic layer specification for using in presets

* Modify presets to use the generic scheme
This commit is contained in:
Sina Afrooze
2018-11-06 07:39:29 -08:00
committed by Gal Leibovich
parent 811152126c
commit 93571306c3
19 changed files with 233 additions and 101 deletions

View File

@@ -1,9 +1,11 @@
import math
from typing import List, Union
from types import FunctionType
from typing import Any
import tensorflow as tf
from rl_coach.utils import force_list
from rl_coach.architectures import layers
from rl_coach.architectures.tensorflow_components import utils
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout, dropout_rate, is_training, name):
@@ -17,6 +19,8 @@ def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dr
# activation
if activation_function:
if isinstance(activation_function, str):
activation_function = utils.get_activation_function(activation_function)
layers.append(
activation_function(layers[-1], name="{}_activation".format(name))
)
@@ -33,11 +37,35 @@ def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dr
return layers
class Conv2d(object):
# define global dictionary for storing layer type to layer implementation mapping
tf_layer_dict = dict()
def reg_to_tf(layer_type) -> FunctionType:
""" function decorator that registers layer implementation
:return: decorated function
"""
def reg_impl_decorator(func):
assert layer_type not in tf_layer_dict
tf_layer_dict[layer_type] = func
return func
return reg_impl_decorator
def convert_layer(layer):
"""
If layer is callable, return layer, otherwise convert to TF type
:param layer: layer to be converted
:return: converted layer if not callable, otherwise layer itself
"""
if callable(layer):
return layer
return tf_layer_dict[type(layer)](layer)
class Conv2d(layers.Conv2d):
def __init__(self, num_filters: int, kernel_size: int, strides: int):
self.num_filters = num_filters
self.kernel_size = kernel_size
self.strides = strides
super(Conv2d, self).__init__(num_filters=num_filters, kernel_size=kernel_size, strides=strides)
def __call__(self, input_layer, name: str=None, is_training=None):
"""
@@ -49,16 +77,19 @@ class Conv2d(object):
return tf.layers.conv2d(input_layer, filters=self.num_filters, kernel_size=self.kernel_size,
strides=self.strides, data_format='channels_last', name=name)
def __str__(self):
return "Convolution (num filters = {}, kernel size = {}, stride = {})"\
.format(self.num_filters, self.kernel_size, self.strides)
@staticmethod
@reg_to_tf(layers.Conv2d)
def to_tf(base: layers.Conv2d):
return Conv2d(
num_filters=base.num_filters,
kernel_size=base.kernel_size,
strides=base.strides)
class BatchnormActivationDropout(object):
class BatchnormActivationDropout(layers.BatchnormActivationDropout):
def __init__(self, batchnorm: bool=False, activation_function=None, dropout_rate: float=0):
self.batchnorm = batchnorm
self.activation_function = activation_function
self.dropout_rate = dropout_rate
super(BatchnormActivationDropout, self).__init__(
batchnorm=batchnorm, activation_function=activation_function, dropout_rate=dropout_rate)
def __call__(self, input_layer, name: str=None, is_training=None):
"""
@@ -72,20 +103,18 @@ class BatchnormActivationDropout(object):
dropout=self.dropout_rate > 0, dropout_rate=self.dropout_rate,
is_training=is_training, name=name)
def __str__(self):
result = []
if self.batchnorm:
result += ["Batch Normalization"]
if self.activation_function:
result += ["Activation (type = {})".format(self.activation_function.__name__)]
if self.dropout_rate > 0:
result += ["Dropout (rate = {})".format(self.dropout_rate)]
return "\n".join(result)
@staticmethod
@reg_to_tf(layers.BatchnormActivationDropout)
def to_tf(base: layers.BatchnormActivationDropout):
return BatchnormActivationDropout(
batchnorm=base.batchnorm,
activation_function=base.activation_function,
dropout_rate=base.dropout_rate)
class Dense(object):
class Dense(layers.Dense):
def __init__(self, units: int):
self.units = units
super(Dense, self).__init__(units=units)
def __call__(self, input_layer, name: str=None, kernel_initializer=None, activation=None, is_training=None):
"""
@@ -97,11 +126,13 @@ class Dense(object):
return tf.layers.dense(input_layer, self.units, name=name, kernel_initializer=kernel_initializer,
activation=activation)
def __str__(self):
return "Dense (num outputs = {})".format(self.units)
@staticmethod
@reg_to_tf(layers.Dense)
def to_tf(base: layers.Dense):
return Dense(units=base.units)
class NoisyNetDense(object):
class NoisyNetDense(layers.NoisyNetDense):
"""
A factorized Noisy Net layer
@@ -109,8 +140,7 @@ class NoisyNetDense(object):
"""
def __init__(self, units: int):
self.units = units
self.sigma0 = 0.5
super(NoisyNetDense, self).__init__(units=units)
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None, is_training=None):
"""
@@ -125,6 +155,16 @@ class NoisyNetDense(object):
# forward (either act or train, both for online and target networks).
# A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps)
def _f(values):
return tf.sqrt(tf.abs(values)) * tf.sign(values)
def _factorized_noise(inputs, outputs):
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
# lighter algos (e.g. DQN) should not use it
noise1 = _f(tf.random_normal((inputs, 1)))
noise2 = _f(tf.random_normal((1, outputs)))
return tf.matmul(noise1, noise2)
num_inputs = input_layer.get_shape()[-1].value
num_outputs = self.units
@@ -145,23 +185,14 @@ class NoisyNetDense(object):
initializer=kernel_stddev_initializer)
bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,),
initializer=kernel_stddev_initializer)
bias_noise = self.f(tf.random_normal((num_outputs,)))
weight_noise = self.factorized_noise(num_inputs, num_outputs)
bias_noise = _f(tf.random_normal((num_outputs,)))
weight_noise = _factorized_noise(num_inputs, num_outputs)
bias = bias_mean + bias_stddev * bias_noise
weight = weight_mean + weight_stddev * weight_noise
return activation(tf.matmul(input_layer, weight) + bias)
def factorized_noise(self, inputs, outputs):
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
# lighter algos (e.g. DQN) should not use it
noise1 = self.f(tf.random_normal((inputs, 1)))
noise2 = self.f(tf.random_normal((1, outputs)))
return tf.matmul(noise1, noise2)
@staticmethod
def f(values):
return tf.sqrt(tf.abs(values)) * tf.sign(values)
def __str__(self):
return "Noisy Dense (num outputs = {})".format(self.units)
@reg_to_tf(layers.NoisyNetDense)
def to_tf(base: layers.NoisyNetDense):
return NoisyNetDense(units=base.units)