1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

Removed tensorflow specific code in presets (#59)

* Add generic layer specification for using in presets

* Modify presets to use the generic scheme
This commit is contained in:
Sina Afrooze
2018-11-06 07:39:29 -08:00
committed by Gal Leibovich
parent 811152126c
commit 93571306c3
19 changed files with 233 additions and 101 deletions

View File

@@ -0,0 +1,40 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Module containing utility functions
"""
import tensorflow as tf
def get_activation_function(activation_function_string: str):
"""
Map the activation function from a string to the tensorflow framework equivalent
:param activation_function_string: the type of the activation function
:return: the tensorflow activation function
"""
activation_functions = {
'relu': tf.nn.relu,
'tanh': tf.nn.tanh,
'sigmoid': tf.nn.sigmoid,
'elu': tf.nn.elu,
'selu': tf.nn.selu,
'leaky_relu': tf.nn.leaky_relu,
'none': None
}
assert activation_function_string in activation_functions.keys(), \
"Activation function must be one of the following {}. instead it was: {}" \
.format(activation_functions.keys(), activation_function_string)
return activation_functions[activation_function_string]