mirror of
https://github.com/gryf/coach.git
synced 2026-02-15 05:25:55 +01:00
Removed tensorflow specific code in presets (#59)
* Add generic layer specification for using in presets * Modify presets to use the generic scheme
This commit is contained in:
committed by
Gal Leibovich
parent
811152126c
commit
93571306c3
@@ -1,5 +1,5 @@
|
||||
from rl_coach.agents.n_step_q_agent import NStepQAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Conv2d, Dense
|
||||
from rl_coach.architectures.layers import Conv2d, Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from rl_coach.agents.dqn_agent import DQNAgentParameters
|
||||
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, \
|
||||
PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from rl_coach.agents.dqn_agent import DQNAgentParameters
|
||||
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, \
|
||||
PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
# make sure you have $CARLA_ROOT/PythonClient in your PYTHONPATH
|
||||
from carla.driving_benchmark.experiment_suites import CoRL2017
|
||||
from rl_coach.logger import screen
|
||||
@@ -10,7 +9,7 @@ from rl_coach.agents.cil_agent import CILAgentParameters
|
||||
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
||||
from rl_coach.architectures.head_parameters import RegressionHeadParameters
|
||||
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Conv2d, Dense, BatchnormActivationDropout
|
||||
from rl_coach.architectures.layers import Conv2d, Dense, BatchnormActivationDropout
|
||||
from rl_coach.base_parameters import VisualizationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.carla_environment import CarlaEnvironmentParameters
|
||||
@@ -46,34 +45,34 @@ agent_params.network_wrappers['main'].input_embedders_parameters = {
|
||||
'CameraRGB': InputEmbedderParameters(
|
||||
scheme=[
|
||||
Conv2d(32, 5, 2),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function='tanh'),
|
||||
Conv2d(32, 3, 1),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function='tanh'),
|
||||
Conv2d(64, 3, 2),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function='tanh'),
|
||||
Conv2d(64, 3, 1),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function='tanh'),
|
||||
Conv2d(128, 3, 2),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function='tanh'),
|
||||
Conv2d(128, 3, 1),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function='tanh'),
|
||||
Conv2d(256, 3, 1),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function='tanh'),
|
||||
Conv2d(256, 3, 1),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function=tf.tanh),
|
||||
BatchnormActivationDropout(batchnorm=True, activation_function='tanh'),
|
||||
Dense(512),
|
||||
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.3),
|
||||
BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.3),
|
||||
Dense(512),
|
||||
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.3)
|
||||
BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.3)
|
||||
],
|
||||
activation_function='none' # we define the activation function for each layer explicitly
|
||||
),
|
||||
'measurements': InputEmbedderParameters(
|
||||
scheme=[
|
||||
Dense(128),
|
||||
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.5),
|
||||
BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5),
|
||||
Dense(128),
|
||||
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.5)
|
||||
BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5)
|
||||
],
|
||||
activation_function='none' # we define the activation function for each layer explicitly
|
||||
)
|
||||
@@ -84,7 +83,7 @@ agent_params.network_wrappers['main'].middleware_parameters = \
|
||||
FCMiddlewareParameters(
|
||||
scheme=[
|
||||
Dense(512),
|
||||
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.5)
|
||||
BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5)
|
||||
],
|
||||
activation_function='none'
|
||||
)
|
||||
@@ -94,9 +93,9 @@ agent_params.network_wrappers['main'].heads_parameters = [
|
||||
RegressionHeadParameters(
|
||||
scheme=[
|
||||
Dense(256),
|
||||
BatchnormActivationDropout(activation_function=tf.tanh, dropout_rate=0.5),
|
||||
BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5),
|
||||
Dense(256),
|
||||
BatchnormActivationDropout(activation_function=tf.tanh)
|
||||
BatchnormActivationDropout(activation_function='tanh')
|
||||
],
|
||||
num_output_head_copies=4 # follow lane, left, right, straight
|
||||
)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, DistributedCoachSynchronizationType
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
|
||||
from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from rl_coach.agents.ddpg_agent import DDPGAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.control_suite_environment import ControlSuiteEnvironmentParameters, control_suite_envs
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from rl_coach.agents.ddpg_agent import DDPGAgentParameters
|
||||
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
||||
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, PresetValidationParameters
|
||||
from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps, TrainingSteps
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from rl_coach.agents.actor_critic_agent import ActorCriticAgentParameters
|
||||
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
||||
from rl_coach.architectures.middleware_parameters import LSTMMiddlewareParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, MiddlewareScheme, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from rl_coach.agents.ddpg_agent import DDPGAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, EmbedderScheme
|
||||
from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from rl_coach.agents.naf_agent import NAFAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, GradientClippingMethod
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from rl_coach.agents.ppo_agent import PPOAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
||||
from rl_coach.environments.environment import SingleLevelSelection
|
||||
|
||||
@@ -2,7 +2,7 @@ import numpy as np
|
||||
|
||||
from rl_coach.agents.hac_ddpg_agent import HACDDPGAgentParameters
|
||||
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.architectures.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, EmbeddingMergerType, EmbedderScheme
|
||||
from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps, TrainingSteps
|
||||
from rl_coach.environments.gym_environment import GymVectorEnvironment
|
||||
|
||||
Reference in New Issue
Block a user